A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

 Dmitri Semikoz

 APC, Paris

 With G.Giacinti and M.Kachelriess, A.Neronov, and V.Savchenko

 arxiv: 1307.2158, 1403.3380, 1412.1690

 1502.01608, 1504.06472 and 1505.02720

Overview:

- Introduction: cosmic rays
- Galactic Magnetic Field
- Cosmic ray escape from Galaxy: Knee region
- Galactic to extra-galactic cosmic ray transition
- Neutrinos in ICECUBE: galactic contribution
- Nearby 'recent' source: protons, secondary positrons and anti-protons
- Anisotropy
- Consclusions

Galactic cosmic rays

Direct detection of cosmic rays

Stratospheric Balloons: from few hrs to months

Magnetic Spectrometers

BESS/POLAR/TEV (11 Flights) WIZARD (6,Flights) HEAT/PBAR (4,Flights)

Calorimetry, TRD +.. RUNJOB (62 day, 10 Flights) TRACER (18 days, 3 Flights) CREAM (161 days,6 Flights) ATIC (53 days, 3 Flights) TIGER/S-TIGER (2/55 days)

Space:

Long missions (years) Small payloads Low energies..

IMP series < GeV/n ACE-CRIS/SIS Ekin < GeV/n VOYAGER-HET/CRS < 100 MeV/n ULYSSES-HET (nuclei) < 100 MeV/n ULYSSES-KET (electrons) < 10 GeV CRRES/ONR < (nuclei) 600 MeV/n HEAO3-C2 (nuclei) < 40 GeV/n

Short missions (days)/ Largerpayloads

CRN on Challenger (3.5 days 1985)

AMS-01 on Discovery (8 days, 1998)

 PAMELA
 AMS-02

 Long missions
 AMS-02

p/He spectra

AMS-2 results

AMS-2 protons

AMS-2 He

Cosmic Rays in the Solar system/

CERN, Mai 27, 2015 Galactic cosmic ray spectrum

Measurement of the spectrum of Galactic CRs not affected by the Heliospheric effects could be deduced from the gamma-ray spectrum of the Giant Molecular clouds.

Galactic cosmic ray spectrum has a strong break at the energy ~few GeV.

Direct detection of cosmic rays

- Best way to get information on particle spectra
- Can be affected by local Solar system MF at E<200 GeV</p>
- Show harder power law spectra 1/E^2.5 or 2.55 for all nuclei, except protons are with alpha=2.7
- Can not go to knee (3 PeV energy) due to small statistics. One need in ground experiments.

Indirect detection of cosmic rays

KASCADE experiment 40000 m² 10¹⁵-10¹⁷ eV

Measure electron and muon size at Karlsruhe, Germany (near sea level). Energy spectra of 5 primary mass groups

are obtained from two dimensional Ne-Nµ spectrum by unfolding method (P,He,CNO,Si,Fe).

Fig. 1. Left: layout of the KASCADE air shower experiment; Right: sketch of a detector station with shielded and unshielded scintillation detectors.

Pierre Auger Observatory South site in Argentina almost finished North site – project

Surface Array 1600 detector stations 1.5 Km spacing 3000 Km² (30xAGASA)

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total

Spectra of individual nuclei

Proton and CNO spectra

Total cross section

Distribution of secondaries

Dipole anisotropy

Galactic magnetic field

MILKY WAY GALAXY

Galactic magnetic field

B = B_disk (regular) + B_disk (turbulent) + B_halo(regular) + B_halo (turbulent)

Synchrotron/RM maps

From R.Jansson & G.Farrar, arXiv:1204.3662

Galactic magnetic field: disk

R.Jansson & G.Farrar, arXiv:1204.3662

Galactic magnetic field halo: x-shape

R.Jansson & G.Farrar, arXiv:1204.3662

GMF regular field parameters

Table 1				
Best-fit GMF	parameters	with	1 - o	intervals.

Field	Best fit Parameters	Description
Disk	$b_1 = 0.1 \pm 1.8 \mu\text{G}$	field strengths at $r = 5$ kpc
	$b_2 = 3.0 \pm 0.6 \mu\text{G}$	
	$b_3 = -0.9 \pm 0.8 \mu\text{G}$	
	$b_4 = -0.8 \pm 0.3 \mu\text{G}$	
	$b_5 = -2.0 \pm 0.1 \mu G$	
	$b_6 = -4.2 \pm 0.5 \mu\text{G}$	
	$b_7 = 0.0 \pm 1.8 \mu\text{G}$	
	$b_8 = 2.7 \pm 1.8 \mu\text{G}$	inferred from $b_1,, b_7$
	$b_{ring} = 0.1 \pm 0.1 \mu G$	ring at 3 kpc $< r < 5$ kpc
	$h_{\rm disk} = 0.40 \pm 0.03 \; {\rm kpc}$	disk/halo transition
	$w_{\rm disk} = 0.27 \pm 0.08 \; \rm kpc$	transition width
Toroidal	$B_n = 1.4 \pm 0.1 \mu G$	northern halo
halo	$B_s = -1.1 \pm 0.1 \mu G$	southern halo
	$r_{\rm n} = 9.22 \pm 0.08 \text{ kpc}$	transition radius, north
	$r_{\rm s} > 16.7 \; \rm kpc$	transition radius, south
	$w_{\rm h} = 0.20 \pm 0.12 \text{ kpc}$	transition width
	$z_0 = 5.3 \pm 1.6 \text{ kpc}$	vertical scale height
X halo	$B_X = 4.6 \pm 0.3 \mu G$	field strength at origin
	$\Theta_X^0 = 49 \pm 1^\circ$	elev. angle at $z = 0, r > r_X^c$
	$r_{\rm X}^{\rm c} = 4.8 \pm 0.2 \; {\rm kpc}$	radius where $\Theta_X = \Theta_X^0$
	$r_{\rm X} = 2.9 \pm 0.1 \; {\rm kpc}$	exponential scale length
striation	$\gamma = 2.92 \pm 0.14$	striation and/or n_{cre} rescaling

R.Jansson & G.Farrar, arXiv:1204.3662

Galactic magnetic field

B = B_disk (regular) + B_disk (turbulent) + B_halo(regular) + B_halo (turbulent)

Galactic magnetic field: turbulent component

- Field with $\langle B(r) \rangle = 0$ $\langle B(r)^2 \rangle \equiv B_{\rm rms}^2 > 0.$
- Power spectrum

- With index $\alpha = 5/3, 3/2$ for Kolmogorov/Kraichnan cases
- Correlation length

$$L_{\rm c} = \frac{L_{\rm max}}{2} \, \frac{\alpha - 1}{\alpha} \, \frac{1 - (L_{\rm min}/L_{\rm max})^{\alpha}}{1 - (L_{\rm min}/L_{\rm max})^{\alpha - 1}}$$

Where

$$L_{\min} = 1 \text{ AU}$$
 Lmax=25-100 pc

LOFAR measurement of maximum scale of turbulent GMF in disk

arXiv: 1308.2804

Fig. 9. Power spectra of total intensity from the LOFAR (dots) and WSRT (crosses) observations. The error bars indicate statistical errors at 1σ . The fitted power law (dashed line) with a spectral index $\alpha = -1.84 \pm 0.19$ for $\ell \in [100, 1300]$ is also shown.

Lmax ~ 20 pc +-6 pc in disk

Galactic magnetic field: turbulent component

 For G.Farrar model there is dedicated paper on turbulent component arXiv: 1210.7820

For Pshirkov et al only deflection map in arXiv:1304.3217

$$B_{\rm rms}(r,z) = B(r) \exp\left(-\frac{|z|}{z_0}\right)$$

 $B(r) = B_0 = 6 \ \mu G$ $z_0 = 1.8 \ kpc$

Thanks to G.Farrar and P.Tinyakov for discussion

Only turbulent diffusion

G.Giacinti et al, arXiv:1112.5599
Regular and turbulent diffusion

Escape model

ESCAPE MODEL:

- Idea: V. L. Ginzburg and S. I. Syrovatskii, 1962-1964; small angle diffusion approximation
- Developement: V. S. Ptuskin et al., Astron. Astrophys. 268, 726 (1993); J. Candia, E. Roulet and L. N. Epele, JHEP 0212, 033 (2002); J. Candia, S. Mollerach and E. Roulet, JCAP 0305, 003 (2003). *Hall diffusion approximation*

CERN, Mai 27, 2015 Cosmic Ray Knee

- change of interactions at multi-TeV energies: excluded by LHC
- maximal energy of dominant CR sources Hillas model
- knee at $R_L(E/Z) \simeq l_{\rm coh}$:
 - \Rightarrow change in diffusion from $D(E) \sim E^{1/3}$ to
 - ▶ Hall diffusion $D(E) \sim E$
 - $\blacktriangleright \ {\rm small-angle \ scattering} \ D(E) \sim E^2$
 - something intermediate?

CERN, Mai 27, 2015 Cosmic Ray Knee

- change of interactions at multi-TeV energies: excluded by LHC
- maximal energy of dominant CR sources Hillas model
- knee at $R_L(E/Z) \simeq l_{\rm coh}$:
 - \Rightarrow change in diffusion from $D(E) \sim E^{1/3}$ to
 - ▶ Hall diffusion $D(E) \sim E$
 - $\blacktriangleright \ {\rm small-angle \ scattering} \ D(E) \sim E^2$
 - something intermediate?

our approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.

Grammage: amplitude of Bturb

 \Rightarrow prefers weak random fields

 \Rightarrow fluxes $I_A(E)$ of all isotopes fixed by low-energy data

Escape model does not work with large turbulent field

Magnetic field will be reduced by factor ~6 in next generation models. Thanks to G.Farrar for discussion.

Model

- Sources with power law spectrum fitted to CREAM data at TeV region. 1/E^α
- Emax =10¹⁷ eV α=2.4 protons α=2.2 nuclei
- Distributed as SN in Galaxy
- Turbulent field in disk with Kolmogorov turbulence and Lmax =25 pc
- GMF of Jansson & Farrar with reduced turbulent field amplitude in 8 times.

Cosmic Ray Knee: protons

Cosmic Ray Knee: He

Cosmic Ray Knee: C and O

Cosmic Ray Knee: CNO

Cosmic Ray Knee: Mg and Si

Cosmic Ray Knee: Mg+Si

Cosmic Ray Knee: Fe

Cosmic Ray Knee: Mg+Si+Fe

Thanks to Andreas Haungs for discussion

Cosmic Ray Knee: all particles

Anisotropy in arrival directions

Cosmic Ray Knee: anisotropy

Transition from galactic to extragalactic cosmic rays

Dip model: Protons can fit UHECR data

V.Berezinsky, astro-ph/0509069

Mixed composition model

D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

Anisotropy dipole

Pierre Auger Collaboration, arXiv:1103.2721

Dependence on parameters

Turb. Magn. Field spectrum Kolmogorov/Kraichnan

Lmax = 100-300 pc

G.Giacinti et al, arXiv:1112.5599

Auger cosmposition measurements

Auger Collaboration, arXiv:1409.5083

Auger limit on Fe fraction

LnA plot

Auger dipole measurements

Auger Collaboration, arXiv:1310.4620

Contribution of extra-Galactic sources

Contribution of extra-Galactic protons to cosmic ray proton flux

Detection of astrophysical neutrino flux by ICECUBE

Conclusion: proton, photon and neutrino fluxes are connected in well-defined way. If we know one of them we can predict other ones: $E_{\nu}^{tot} \sim E_{\nu}^{tot}$

IceCube + Fermi LAT

Half of ICECUBE events E>100 TeV are in Galactic plane. Are they correlate with gamma-rays?

Neronov, D.S. and Tchernin, Phys.Rev. D89 (2014) 103002

Real multimessenger fluxes, alpha=2.5

Neronov, D.S. and Tchernin, Phys.Rev. D89 (2014) 103002
IceCube galactic plane 3 years: 2% by chance – small statistics

ICECUBE collaboration, 1405.5303

IceCube neutrino sky map 3 years E> 100 TeV

IceCube + Fermi LAT all sky: protons 1/E^2.5

A.Neronov, D.S. arXiv:1412.1690

Profile neutrino

Profile gamma

2 Myr old SN: protons, positrons and anti-protons

Proton flux from SN at 1 PeV

Proton flux from SN at 1 PeV

Proton flux from 1 SN: early time

Flux at 100 TeV

Proton flux from 1 SN

M.Kachelriess, A. Neronov and D.Semikoz, arXiv:1504.06472

Grammage to create secondaries

For energies E < 10¹⁴ eV, the grammage is nearly energy independent, X \approx 0.3 g/cm2, for a source of the age T = 2 Myr. This mean that one expect $\gamma_{e^+} \simeq \tilde{\gamma}_p \simeq 2.7 - 2.8$.

. 1

Secondary positrons and antiprotons

For calculation of secondaries we used post-LHC model QGSJET-II-04m in most recent modification M. Kachelrieß et al., Ap. J. 803, 54 (2015)

Positron to (electron + positron) ratio

Positron flux and antiprotons from AMS-II

Antriprotons

Anisotropy

Anisotropy

Anisotropy and flux

Conclusions

- We have phenomenological understanding of Galactic cosmic rays from TeV*Z to 0.1 EeV energies.
- First diffuse neutrino flux measurements contain galactic and extragalactic components.
- Galactic component consistent with diffuse galactic flux by Fermi and proton power law 2.5

- This is consistent with nuclei spectra except of LOCAL protons.
- Local 2.7 proton flux is local due to 1-2 Myr old nearby source. Same source responsible to positron and antiproton excess and anomalies in dipole anisotropy
- Contribution of sources seen in EG cosmic ray proton spectrum at 0.03 -3 EeV and can dominate EG gamma-ray and neutrino backgrounds