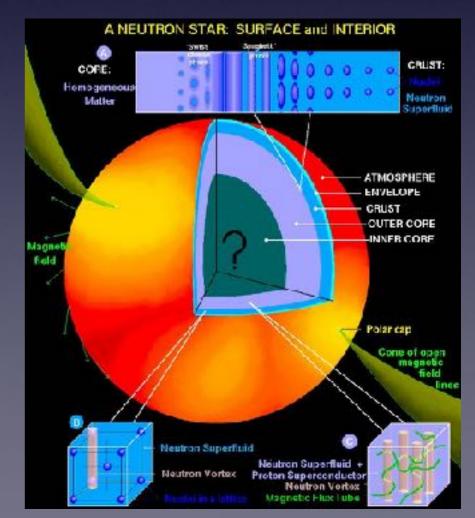

Nuclear Astrophysics in the new era of multi-messenger Astronomy

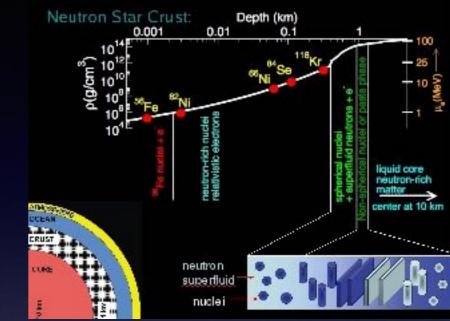
and Cassiopeia A

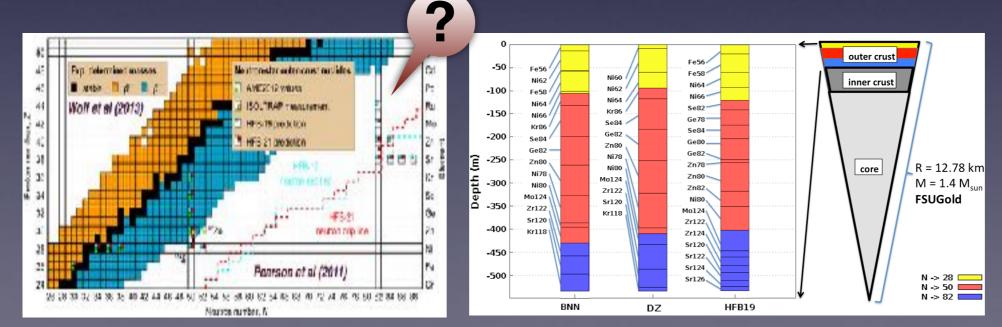
Jorge Piekarewicz Florida State University



The Anatomy of a Neutron Star

- Atmosphere (10 cm): Shapes Thermal Radiation (L= $4\pi\sigma R^2T^4$)
- Envelope (100 m): Huge Temperature Gradient (10⁸K ↔ 10⁶K)
- Outer Crust (400 m): Coulomb Crystal (Exotic neutron-rich nuclei)
- Inner Crust (1 km): Coulomb Frustration ("Nuclear Pasta")
- Outer Core (10 km): Uniform Neutron-Rich Matter (n,p,e,μ)
- Inner Core (?): Exotic Matter (Hyperons, condensates, quark matter)




The Composition of the Outer Crust Enormous sensitivity to nuclear masses

- System unstable to cluster formation
 - BCC lattice of neutron-rich nuclei imbedded in e-gas
- Composition emerges from relatively simple dynamics
- Competition between electronic and symmetry energy

 $E/A_{\rm tot} = M(N,Z)/A + \frac{3}{4}Y_e^{4/3}k_{\rm F} + \text{lattice}$

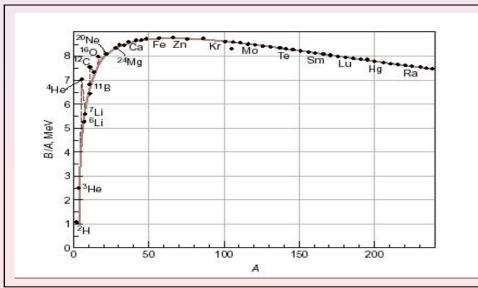
Precision mass measurements of exotic nuclei is essential
 For neutron-star crusts and r-process nucleosynthesis

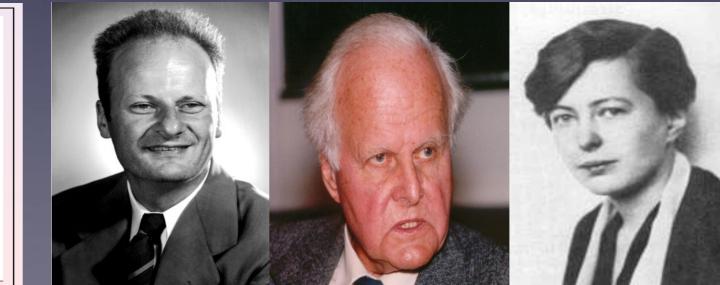
CERNCOURIER VOLUME 53 NUMBER 3 APRIL 2013

NATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

ISOLTRAP casts light on neutron stars

The Liquid Drop Model

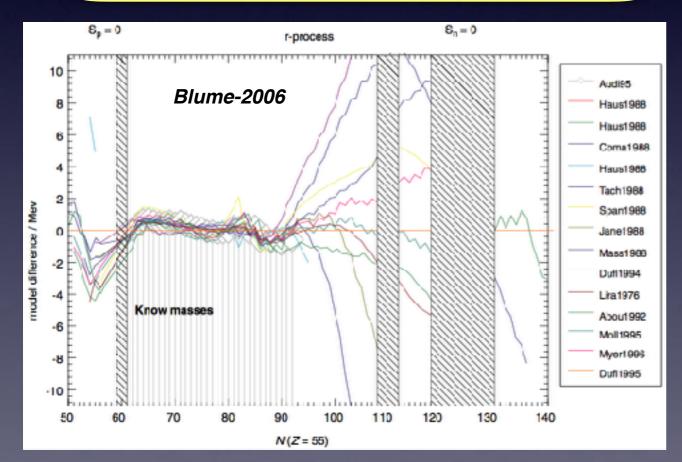

Bethe-Weizsäcker Mass Formula (circa 1935-36)


- $R = r_0 A^{1/3}$ Nuclear forces saturate equilibrium density
- Nuclei penalized for developing a surface 8
- Nuclei penalized by Coulomb repulsion 3
- Nuclei penalized for isospin imbalance $(N \neq Z)$ 8

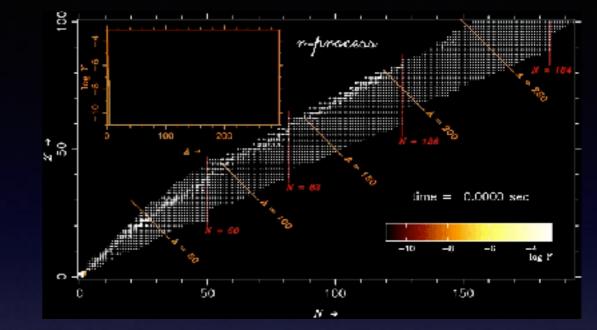
•
$$B(Z, N) = -a_v A + a_s A^{2/3} + a_c Z^2 / A^{1/3} + a_a (N - Z)^2 / A + ... + shell corrections (2, 8, 20, 28, 50, 82, 126, ...)$$

 $a_v \simeq 16.0, a_s \simeq 17.2, a_c \simeq 0.7, a_a \simeq 23.3$ (in MeV)

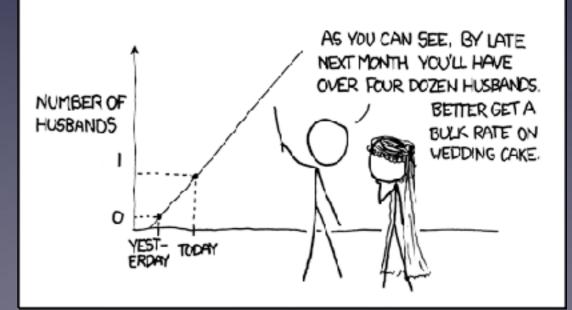
Neutron stars are gravitationally bound!


Masses of relevance to the r-process Inevitable Theoretical Extrapolations

PHYSICAL REVIEW C 92, 035807 (2015)


Impact of individual nuclear masses on r-process abundances

M. R. Mumpower,^{1,*} R. Surman,¹ D.-L. Fang,² M. Beard,¹ P. Möller,³ T. Kawano,³ and A. Aprahamian¹ ¹Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA ²Department of Physics, Michigan State University, East Lansing, Michigan 48824, USA ³Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 28 May 2015; revised manuscript received 29 July 2015; published 15 September 2015)


We have performed for the first time a comprehensive study of the sensitivity of *r*-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ± 0.5 MeV and propagate each mass change to all affected quantities, including *Q* values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an *r*-process simulation. We identify key nuclei whose masses have a substantial impact on abundance predictions for hot, cold, and neutron star merger *r*-process scenarios and could be measured at future radioactive beam facilities.

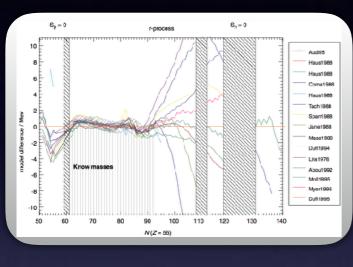
Machine Learning as a last resort to the extrapolation dilemma!

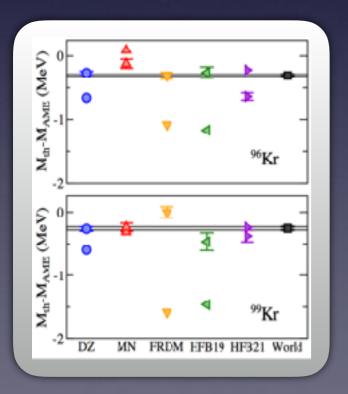
- Theory agrees with experiment in regions where data is available
- Theory disagrees widely outside those regions
- Extrapolations are dangerous yet inevitable!

Nuclear Theory meets Machine Learning

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach

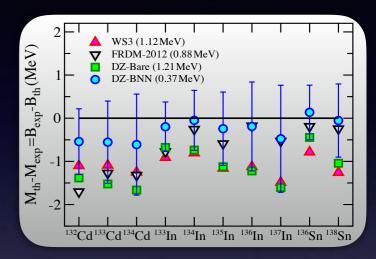
PHYSICAL REVIEW C 93, 014311 (2016)

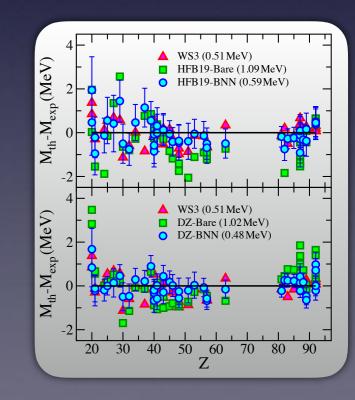

R. Utama,^{*} J. Piekarewicz,[†] and H. B. Prosper[‡] Department of Physics, Florida State University, Tallahassee, Florida 32306, USA


 Use DFT to predict nuclear masses Train BNN by focusing on residuals
 $M(N, Z) = M_{DFT}(N, Z) + \delta M_{BNN}(N, Z)$ Systematic scattering greatly reduced
 Predictions supplemented by theoretical errors

Verify, Validate, and Predict

- Ş Verify: http://www.cs.toronto.edu/~radford/ (Radford M. Neil) ų,
 - Validate: divide data into training and validation sets
- Predict: Use the model outside its comfort zone

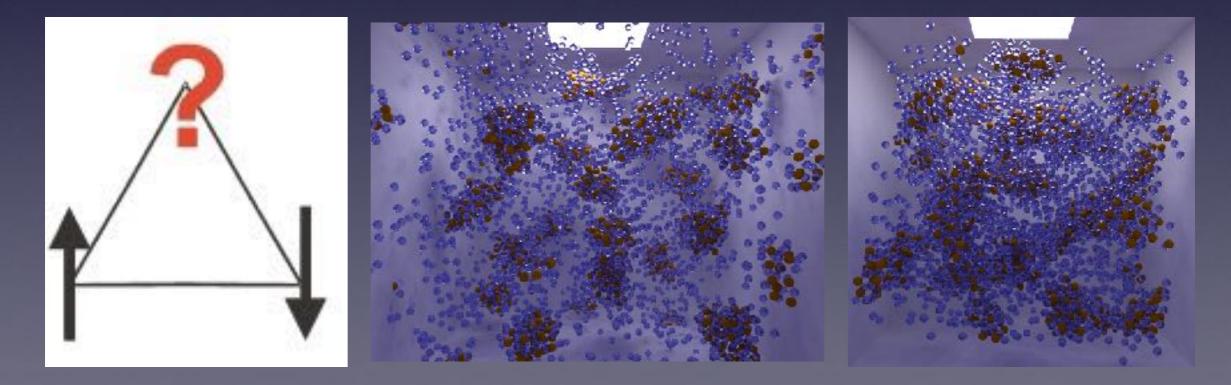



Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach

PHYSICAL REVIEW C 93, 014311 (2016)

R. Utama,^{*} J. Piekarewicz,[†] and H. B. Prosper[‡] Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

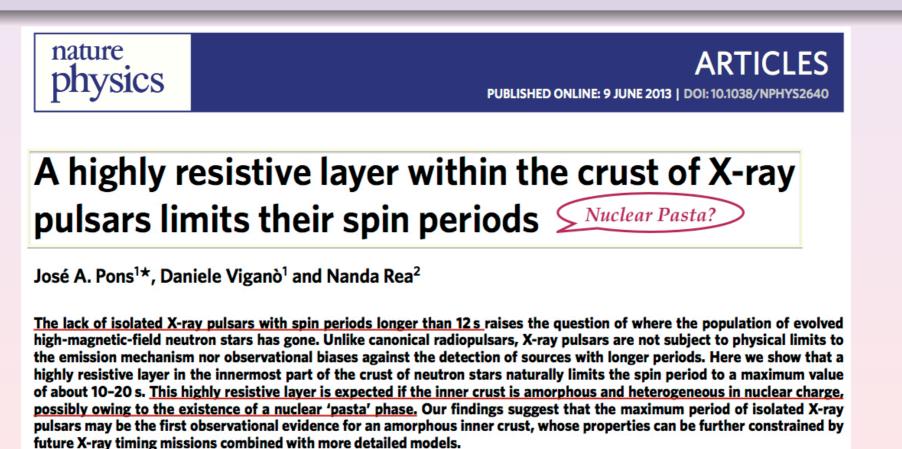
- 🖉 Systematic scattering greatly reduced Models that over-predict tend to go down Models that under-predict tend to go up
 - Predictions with theoretical errors Extrapolations are unreliable - yet errors help mitigate the problem ...
 - 🗳 Accurate predictions for ~60 new nuclei New AME2016 compilation ...
 - Helps in our understanding of both the composition of the stellar crust and r-process nucleosynthesis



The Intriguing Inner Crust

- Top Layers: Coulomb Crystal of n-rich nuclei immersed in e- gas
 ... and a superfluid neutron vapor critical for glitches
- Bottom Layers: Coulomb frustration "Nuclear Pasta"

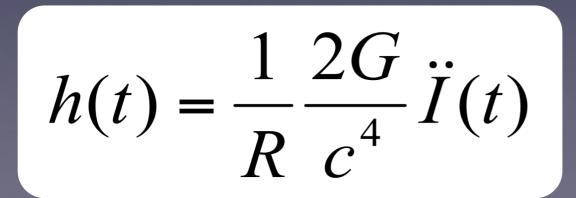
- Emergent from a dynamical (or geometrical) competition
 - Impossible to simultaneously minimize all elementary interactions
 - Emergence of a multitude of topologically distinct (quasi) ground states
 - Universal in complex systems (low-D magnets, correlated e-, ...)



Tidal Polarizability extremely sensitive to the crustal dynamics!

The Inner Crust: "How to smell the pasta?"

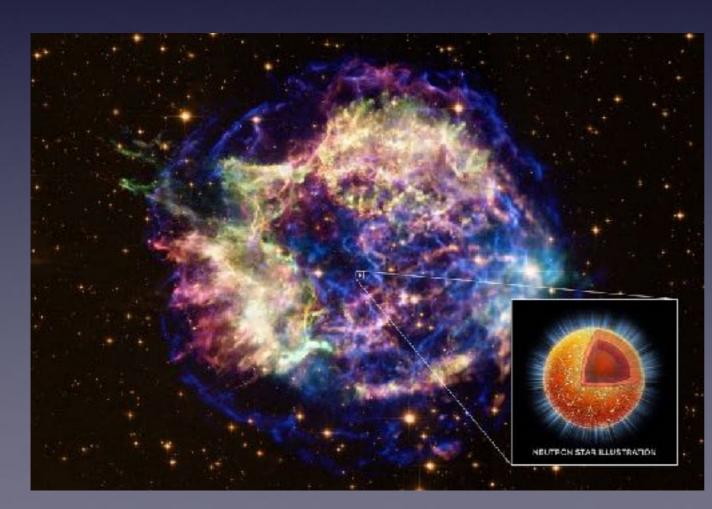
Pons et al., Nature Physics (2013)

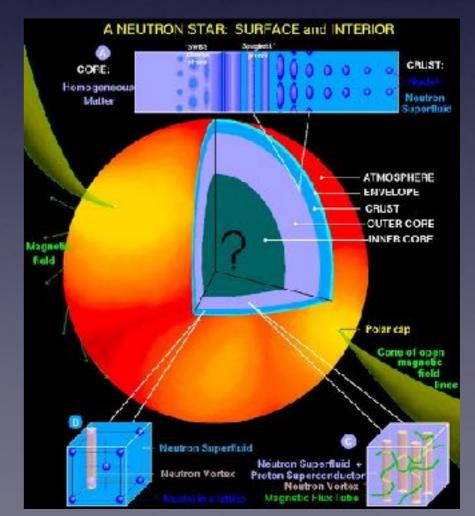

- Coulomb Crystal to Fermi liquid transition mediated by nuclear pasta
- Experimental and observational signatures have proved elusive
- On Earth: Low-energy HI-collisions produce dilute neutron-rich matter However, matter is "warm" and models are required to extrapolate
- On Heaven: Lack of isolated X-ray pulsars with long periods (P ≥ 12 s) Magnetic fields large enough 10¹³ G to suggest longer periods Highly resistive layer decreases electrical conductivity; quenches magnetic field Limits the pulsar spin period to at most 20s

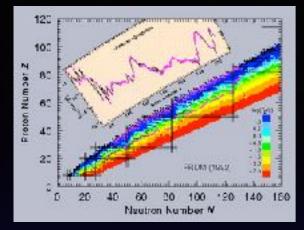
Must calculate the electrical conductivity in the nuclear pasta!

The Richness of the Neutron Star Crust

- Pulsar Glitches: Sudden spin-up of the rotational frequency
- Constrains the fraction of the crustal moment of inertia and the EOS
- Magnetar Giant Flares: Enormous release of magnetic energy
- Crustal pinning and eventual "snapping" of magnetic field lines
- Starquakes: Much like earthquakes but in the neutron star
 - Just as helioseismology, starquakes probe the composition of the crust
- Mass Quadrupoles: Braking strain of the stellar crust
 - "Mountains" on rapidly-rotating neutron stars are efficient sources of Gravitational Wave radiation.
- Tidal polarizability extracted from BNS mergers
 Highly sensitive to crustal EOS






The Anatomy of a Neutron Star

- Atmosphere (10 cm): Shapes Thermal Radiation (L= $4\pi\sigma R^2T^4$)
- Envelope (100 m): Huge Temperature Gradient (10⁸K ↔ 10⁶K)
- Outer Crust (400 m): Coulomb Crystal (Exotic neutron-rich nuclei)
- Inner Crust (1 km): Coulomb Frustration ("Nuclear Pasta")
- Outer Core (10 km): Uniform Neutron-Rich Matter (n,p,e,μ)
- Inner Core (?): Exotic Matter (Hyperons, condensates, quark matter)

Model Building: From Finite Nuclei to Neutron Stars

PHYSICAL REVIEW C 90, 044305 (2014) Building relativistic mean field models for finite nuclei and neutron stars

Wei-Chia Chen^{*} and J. Piekarewicz[†] Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

$$\mathcal{L}_{\text{Yukawa}} = \bar{\psi} \left[g_{\text{s}} \phi - \left(g_{\text{v}} V_{\mu} + \frac{g_{\rho}}{2} \tau \cdot \mathbf{b}_{\mu} + \frac{e}{2} (1 + \tau_3) A_{\mu} \right) \gamma^{\mu} \right] \psi$$
$$\mathcal{L}_{\text{self}} = \frac{\kappa}{3!} (g_{\text{s}} \phi)^3 - \frac{\lambda}{4!} (g_{\text{s}} \phi)^4 + \frac{\zeta}{4!} g_{\text{v}}^4 (V_{\mu} V^{\mu})^2 + \Lambda_{\text{v}} \left(g_{\rho}^2 \, \mathbf{b}_{\mu} \cdot \mathbf{b}^{\mu} \right) \left(g_{\text{v}}^2 V_{\nu} V^{\nu} \right)$$

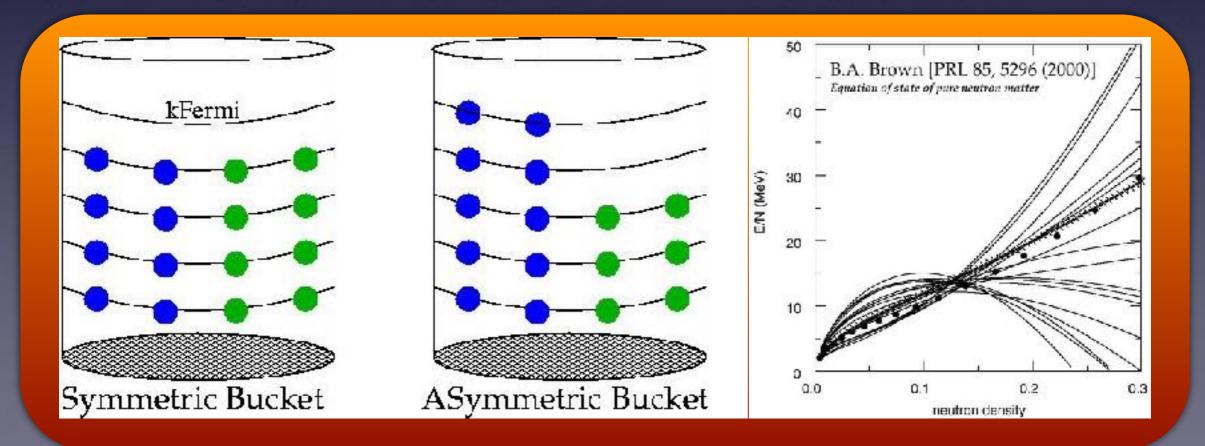
Nuclear Density Functional Theory (DFT)

- Ab-initio calculations of heavy nuclei remains daunting task
- Search for energy functional valid over a large physics domain

"From finite nuclei all the way to neutron stars"

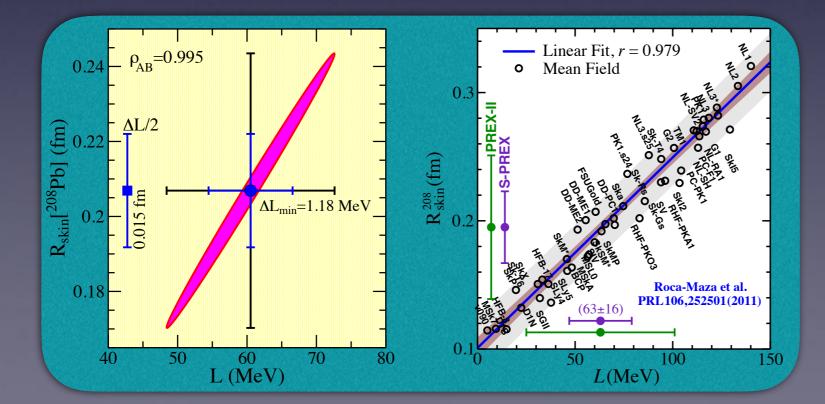
- Incorporate physics insights into the construction of the functional
- Accurately calibrated to various properties of finite nuclei masses, charge radii, and giant monopole resonances
- Empirical constants encode physics beyond mean field
- Empirical constants obtained from the optimization of a quality measure

Nucleus	Observable	Experiment	NL3	FSU	FSU2
¹⁶ O	B/A	7.98	8.06	7.98	8.00
	$R_{\rm ch}$	2.70	2.75	2.71	2.73
⁴⁰ Ca	B/A	8.55	8.56	8.54	8.54
	$R_{ m ch}$	3.48	3.49	3.45	3.47
⁴⁸ Ca	B/A	8.67	8.66	8.58	8.63
	$R_{ m ch}$	3.48	3.49	3.48	3.47
⁶⁸ Ni	B/A	8.68	8.71	8.66	8.69
	$R_{ m ch}$	—	3.88	3.88	3.86
⁹⁰ Zr	B/A	8.71	8.70	8.68	8.69
	$R_{ m ch}$	4.27	4.28	4.27	4.26
¹⁰⁰ Sn	B/A	8.25	8.30	8.24	8.28
	$R_{ m ch}$	—	4.48	4.48	4.47
¹¹⁶ Sn	B/A	8.52	8.50	8.50	8.49
	$R_{ m ch}$	4.63	4.63	4.63	4.61
¹³² Sn	B/A	8.36	8.38	8.34	8.36
	$R_{ m ch}$	4.71	4.72	4.74	4.71
¹⁴⁴ Sm	B/A	8.30	8.32	8.32	8.31
	$R_{\rm ch}$	4.95	4.96	4.96	4.94
²⁰⁸ Pb	B/A	7.87	7.90	7.89	7.88
	$R_{\rm ch}$	5.50	5.53	5.54	5.51


Nucleus	TAMU	RCNP	NL3	FSU	FSU2
⁹⁰ Zr	17.81 ± 0.35	_	18.76	17.86	17.93 ± 0.09
¹¹⁶ Sn	15.90 ± 0.07	15.70 ± 0.10	17.19	16.39	16.47 ± 0.08
144 Sm	15.25 ± 0.11	15.77 ± 0.17	16.29	15.55	15.59 ± 0.09
²⁰⁸ Pb	14.18 ± 0.11	13.50 ± 0.10	14.32	13.72	13.76 ± 0.08

The Equation of State of Neutron-Rich Matter

- Two conserved charges: proton and neutron densities (no weak interactions)
- Equivalently; total nucleon density and asymmetry: ρ and α =(N-Z)/A
- Expand around nuclear equilibrium density: $x=(\rho-\rho_0)/3\rho_0$; $\rho_0 \simeq 0.15$ fm⁻³


$$\mathcal{E}(\rho,\alpha) \simeq \mathcal{E}_0(\rho) + \alpha^2 \mathcal{S}(\rho) \simeq \left(\epsilon_0 + \frac{1}{2}K_0 x^2\right) + \left(J + Lx + \frac{1}{2}K_{\rm sym} x^2\right)\alpha^2$$

Density dependence of symmetry energy poorly constrained!!
"L" symmetry slope ~ pressure of pure neutron matter at saturation

Searching for L: The Strategy $P_{PNM} \simeq L\rho_0 /3$ is not a physical observable!

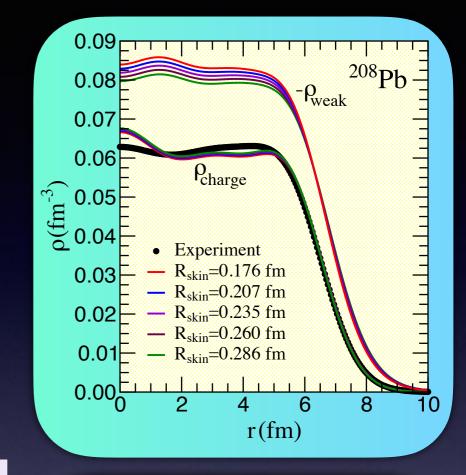
- Establish a powerful physical argument connecting L to R_{skin}
 - Where do the extra 44 neutrons in ²⁰⁸Pb go? Competition between surface tension and the $S(\rho_0)$ - $S(\rho_{surf}) \simeq L$. The larger the value of L, the thicker the neutron skin of ²⁰⁸Pb
- Ensure that "your" accurately-calibrated DFT supports the correlation
 Statistical Uncertainty: Theoretical error bars and correlation coefficients
- Ensure that "all" accurately-calibrated DFT support the correlation
 - Systematic Uncertainty: Systematic errors, much harder to quantify

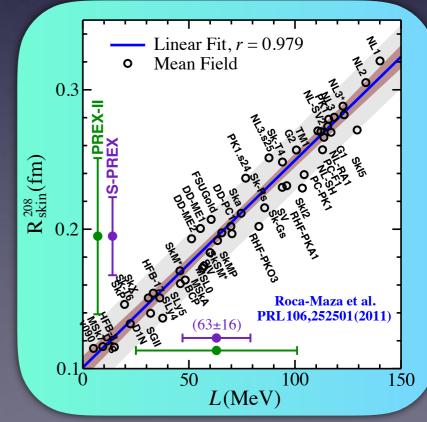
"All models are equal but some models are more equal than others"

The Quest for L at JLAB: Rskin as a proxy for L

- PREX@JLAB: First electroweak (clean!) evidence in favor of Rskin in Pb
- Precision hindered by radiation issues
- Statistical uncertainties 3 times larger than promised: Rskin=0.33(16)fm
- PREX-II and CREX to run in 2018

Original goal of 1% in neutron radius

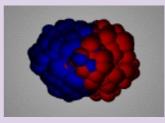

0


+

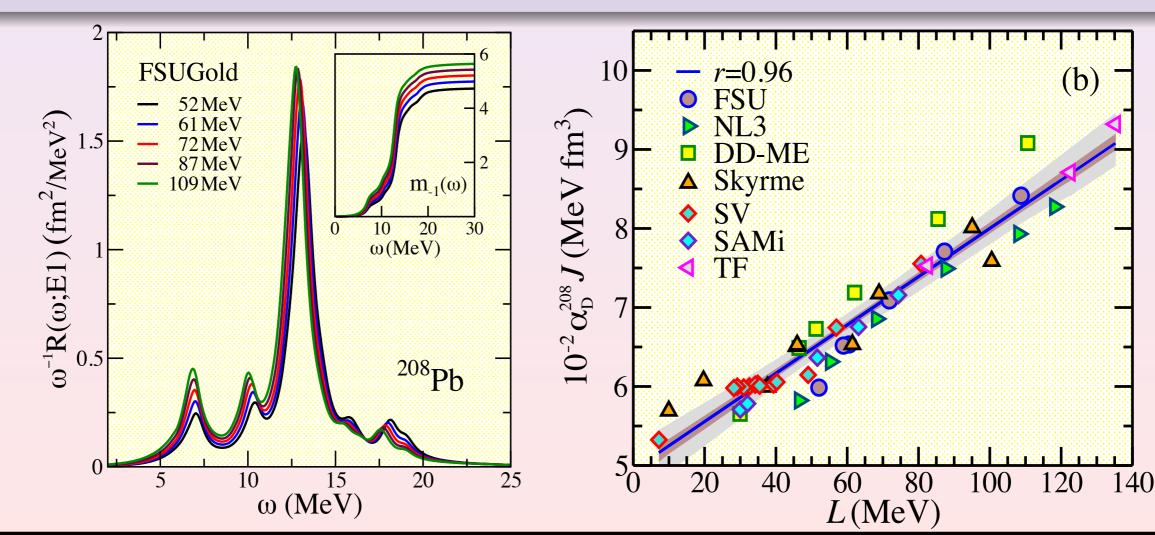
$$A_{\rm PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[\underbrace{1 - 4\sin^2\theta_W}_{\approx 0} - \frac{F_n(Q^2)}{F_p(Q^2)} \right]$$

- Neutral weak-vector boson Z_0 couples preferentially to neutrons
- PV provides a clean measurement of neutron densities (and R_n)

	up-quark	down-quark	proton	neutron			
γ -coupling	+2/3	-1/3	+1	0			
Z ₀ -coupling	$\approx +1/3$	pprox -2/3	pprox 0	-1			
$g_{\rm v}=2t_z-4Q\sin^2 heta_{ m W}pprox 2t_z-Q$							

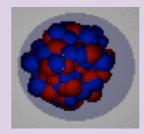


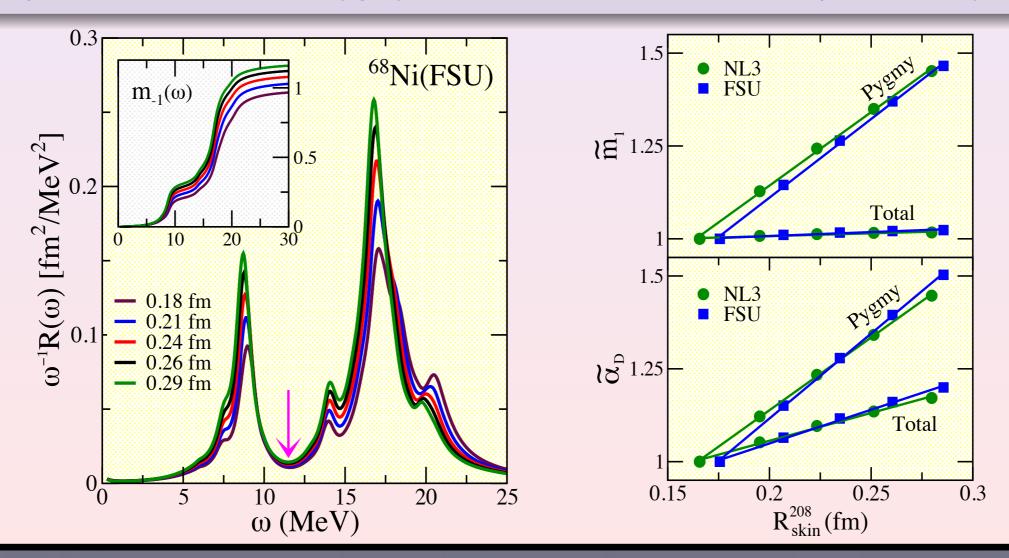
The Isovector Giant Dipole Resonance in ²⁰⁸Pb


JP et al., PRC85, 041302 (2012); Roca-Maza et al., PRC88, 024316 (2013)

IVGDR: Coherent oscillations of protons against neutrons

Nuclear symmetry energy acts as restoring force for this mode

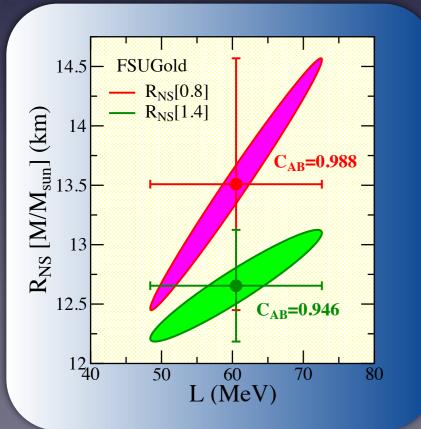

- Energy weighted sum rule largely model independent $\sim NZ/A$
- Electric dipole polarizability (IEWSR) sensitive to L: $\alpha_{D} J \sim a + bL$
- Electric dipole polarizability a powerful complement to neutron skin

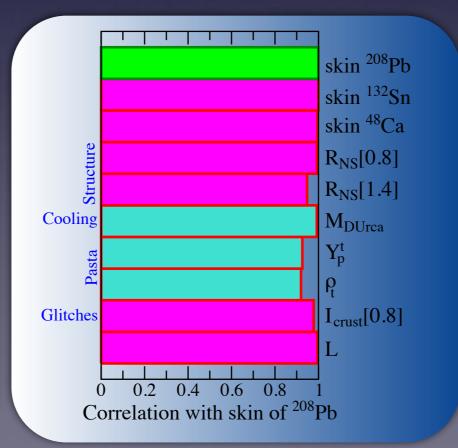

Pygmy Dipole Resonance in unstable ⁶⁸Ni [O. Wieland *et al.*, PRL 102, 092502 (2009); D.M. Rossi *et al.*, PRL 111, 242503 (2013)]

Emergence of significant low-energy "Pygmy" strength

Pygmy perceived as an oscillation of neutron-rich skin against isospin symmetric core

- Pygmy strength of relevance to (γ, n) reactions in stellar environments
- Pygmy strength as a possible constrain on the neutron skin? What is the exact nature of the low-energy Pygmy resonance? Is it possible to isolate the Pygmy from the Giant in a model-independent way?

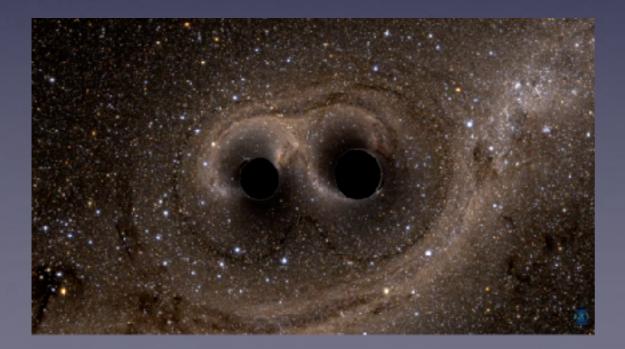


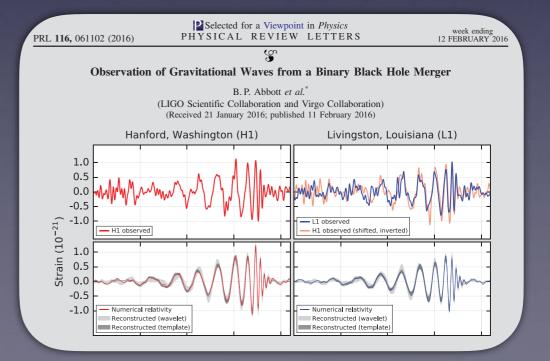



Heaven and Earth ... and "L" The enormous reach of the neutron skin

- Neutron-star radii are sensitive to the EOS near $2\rho_0$
- Neutron star masses sensitive to EOS at much higher density
- Neutron skin correlated to a host of neutron-star properties
 - Stellar radii, proton fraction, enhanced cooling, moment of inertia
- Neutron skin of heavy nuclei and NS radii driven by same physics

"We have detected gravitational waves; we did it" David Reitze, February 11, 2016





- The dawn of a new era: GW Astronomy
 - Initial black hole masses are 36 and 29 solar masses
 - Final black hole mass is 62 solar masses;
 3 solar masses radiated in Gravitational Waves!

