QCD measurements at the LHC

Arthur M. Moraes

Centro Brasileiro de Pesquisas Fisicas CBPF
(on behalf of ATLAS, ALICE CMS and LHCW)

- Introduction: LHC and experiments
- QCD at the LHC
- Soft QCD
- Hard QCD
- Summary

The Large Hadron Collider

QCD measurements at the LHC:

- test predictions of QCD phenomena at high(est) energies with large statistical samples of rare processes;
- detector allow measurements with unprecedented precision and fiducial coverage (wide x -coverage; unprecedented high- Q^{2} interactions)

The Large Hadron Collider: pp collisions

The LHC has also delivered several runs on pA and AA collisions.
https://Ipc.web.cern.ch

7
0
0
0
11
0

$\Lambda \partial 188$
$\Lambda \partial \perp L=S \Lambda$
"T umopınиs
яиоך".

200920102011201220132014201520162017201820192020

Run 2

Inelastic pp cross-section

The inelastic proton-proton cross section versus $\sqrt{ }$ s.
Inelastic interactions are selected using rings of plastic scintillators (MBTS) in the forward region ($2.07<|\eta|<3.86$)

A cross section of $68.1 \pm 1.4 \mathrm{mb}$ is measured in the fiducial region $\xi=M^{2} \mathrm{X} / \mathrm{s}>10^{-6}$

When extrapolated to the full phase space, a cross section of $78.1 \pm 2.9 \mathrm{mb}$ is measured.

Phys. Rev. Lett. 117 (2016) 182002

Proton-proton inelastic cross section at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ in two phase space regions, where $\xi=\mathrm{M}^{2} / \mathrm{s}$, compared to different models and to the ATLAS result.

The analysis is based on events with energy deposits in the forward calorimeters, which cover η of $-6.6<\eta<-3.0$ and $+3.0<\eta<+5.2$ (HF and CASTOR).

$$
\begin{aligned}
& \sigma\left(\xi>10^{-6}\right)=67.5 \pm 0.8 \text { (syst) } \pm 1.6 \text { (lumi) mb } \\
& \sigma\left(\xi X>10^{-7} \text { or } \xi Y>10^{-6}\right)=68.6 \pm 0.5 \text { (syst) } \pm 1.6 \text { (lumi) mb }
\end{aligned}
$$

arXiv:1802.02613v1

Submitted to J. High Energy Phys. (Feb 2018)

Charged Particle Density

$\mathrm{n}_{\mathrm{ch}}>2$

$$
|\eta|<2.5
$$

$\mathrm{p}_{\mathrm{T}}>100 \mathrm{MeV}$

(a)

(b)

Particle multiplicity at different c.m. energies, with different phase space selections: Important input to generator tuning!

Amongst the models considered, EPOS has the best overall description of the data using tracks with $\mathrm{pT}>500 \mathrm{MeV}$.

PYTHIA 8 A2 and PYTHIA 8 MONASH provide a reasonable overall description.

Eur. Phys. J. C (2016) 76:502

Charged Particle Multiplicity

Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach.

The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators.

ALICE

Eur. Phys. J. C 77 (2017) 852

Measurement of the underlying event activity in pp collisions at 13 TeV associated to the leading charged particle (ATLAS).

Measurement of the underlying event activity in pp collisions at 13 TeV , using inclusive Z boson production events (CMS).

arXiv:1711.04299
Submitted to J. High Energy Phys. (Nov 2017)

Measurement of charged pion, kaon, and proton production in proton-proton collisions at $\sqrt{ } s=13 \mathrm{TeV}$

Transverse momentum spectra have been measured for different charged hadron species produced in inelastic pp collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$.

Charged pions, kaons, and protons are identified from the energy deposited in the silicon tracker and the reconstructed particle trajectory.

The yields of such hadrons at rapidities $|y|<1$ are studied as a function of the event charged particle multiplicity measured in the pseudorapidity range $|\eta|<2.4$.

As observed in lower-energy data, the < pT > and the ratios of particle yields are strongly correlated with event particle multiplicity.

No significant dependence with the c.m. energy is observed.

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

ALICE presented the first observation of strangeness enhancement in high-multiplicity proton-proton collisions.

They found that the integrated yields of strange and multistrange particles, relative to pions, increases significantly with the event charged-particle multiplicity.

The measurements are in remarkable agreement with the $\mathrm{p}-\mathrm{Pb}$ collision results, indicating that the phenomenon is related to the final system created in the collision.

In high-multiplicity events strangeness production reaches values similar to those observed in $\mathrm{Pb}-\mathrm{Pb}$ collisions, where a QGP is formed.

Nature Physics 13, 535-539 (2017)

- Yield of D mesons ($|y|<0.5$), HF-decay muons $(2.5<y<4)$ and J/ Ψ ($|y|<0.9$) show faster-thanlinear increase with charged-particle multiplicity at central rapidity

Feature not related to hadronisation, but rather to production process.

- Observed a qualitative agreement with models assuming:
- Multi-parton interactions influencing HF production (PYTHIA8, EPOS3 w/ hydro)
- Contributions of higher Fock-states (Kopeliovich et al.)
- Soft-particle saturation (Ferreiro: percolation, PYTHIA8: color reconnection)

Observation of the doubly charmed baryon: $\Xi^{++}{ }_{c c}$

$$
\Xi^{++}{ }_{c c} \rightarrow \Lambda^{+}{ }_{c} \mathrm{~K}^{-} \Pi^{+} \Pi^{+}
$$

$\mathrm{m}\left(\right.$ 三cc $\left._{\mathrm{cc}^{++}}\right)=3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \mathrm{MeV} / \mathrm{c}^{2}$

LHCb: largest recorded c, b-hadron yields - hard quark mass
 scale as opportunity for QCD studies.

Measurement of inclusive jet and dijet cross-sections in pp collisions at 13 TeV

Inclusive jet and dijet cross-sections are measured in pp collisions at a $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$.
The measurement uses a dataset with an integrated luminosity of $3.2 \mathrm{fb}-1$ recorded in 2015 with the ATLAS detector.
Jets are identified using the anti-kt algorithm with a radius parameter value of $R=0.4$.
The inclusive jet cross-sections are measured as a function of the jet p_{T}, covering the range from 100 GeV to 3.5 TeV , and $|y| \leq 3$.

The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV .

Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.

Measurement of inclusive jet and dijet cross-sections in pp collisions at 13 TeV

Ratios of the NLO and NNLO pQCD predictions to the measured inclusive jet cross-sections, shown as a function of the jet p_{T} in six $|y|$ bins for anti- k_{t} jets with $\mathrm{R}=0.4$.

The NLO predictions are calculated using NLOJET++ with the MMHT 2014 NLO PDF set.
The NNLO predictions are calculated using NNLOJET with $p_{T}{ }^{\text {jet }}$ as the QCD scale and the MMHT 2014 NNLO PDF set.

The grey bands show the total data uncertainty including both the systematic (JES, JER, unfolding, jet cleaning, luminosity) and statistical uncertainties.

Summary of X^{2} /dof values obtained from a global fit using all p_{T} and rapidity bins, comparing the inclusive jet cross-section and the NLO pQCD prediction corrected for non-perturbative and electroweak effects for several PDF sets and for the two scale choices.

$\chi^{2} /$ dof all $\|y\|$ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\text {max }}$	$419 / 177$	$431 / 177$	$404 / 177$	$432 / 177$	$475 / 177$
$p_{\mathrm{T}}^{\text {jet }}$	$399 / 177$	$405 / 177$	$384 / 177$	$428 / 177$	$455 / 177$

Study of inclusive jet yields in Pb+Pb collisions at 5.02 TeV

ATLAS-CONF-2017-009

Nuclear modification factor

$$
R_{\mathrm{AA}}=\frac{\left.\frac{1}{N_{\mathrm{evt}}^{\mathrm{tot}}} \frac{\mathrm{~d}^{2} N_{\mathrm{jet}}}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\right|_{\mathrm{cent}}}{\left.\left\langle T_{\mathrm{AA}}\right\rangle \frac{\mathrm{d}^{2} \sigma_{\mathrm{jet}}}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}\right|_{p p}}
$$

Upper panel: The RAA as a function of jet p_{T} for jets with $|\mathrm{y}|<2.8$ for three centrality bins.
Bottom panel: The RAA as a function of jet p_{T} for jets with $|y|<2.1$ in $0-10 \%$ central collisions compared to the same quantity measured in $V_{s} \mathrm{NN}=2.76 \mathrm{~Pb}+\mathrm{Pb}$ collisions published.

The magnitude of the RAA monotonically decreases moving from peripheral to central collisions. The RAA is flat with rapidity at low ρT and then decreases with rapidity at high $p \mathrm{~T}$.

Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at $\sqrt{ }=7 \mathrm{TeV}$

arXiv:1710.02586
Accepted for publication in Eur. Phys. J. C

$p^{\text {jet }}>40 \mathrm{GeV}$
$1.5<\left|\eta^{\text {jet }}\right|<4.7$ (jets in opposite hemispheres)
Events with no charged particles with $p \mathrm{~T}>0.2 \mathrm{GeV}$ in the interval $-1<\eta<1$ between the jets are observed in excess of calculations that assume no colorsinglet exchange

The measured CSE fractions have been compared to the results of the DO and CDF experiments at $\sqrt{s}=1.8 \mathrm{TeV}$.
A factor of two decrease of the CSE fraction measured at $V_{s}=7 \mathrm{TeV}$ with respect to those at lower collision energies is observed.

The next-to-leading-logarithmic BFKL calculations describe many features of the data, but none of the implementations is able to simultaneously describe all the features of the measurement.

Measuring Double Parton Scattering

Why measure it?
> insight on parton spatial density:

- large $\sigma_{\text {eff: }}$ parton uniformly distributed inside the nucleon, $\sigma_{D P}$ small.
- small $\sigma_{\text {eff: }}$ highly concentrated parton spatial density, $\sigma_{D P}$ large.
> better understanding of non-perturbative QCD dynamics
- is the rate of MPI really independent of the process?
- correlations?

$$
\sigma_{D P}=m \frac{\sigma_{A} \sigma_{B}}{2 \sigma_{e f f}}
$$

> accurate estimation of backgrounds for many rare new physics processes as well as for Higgs boson searches.

- important for the definition of central jet veto cuts.

Double parton scattering in four-jet events

$$
\begin{gathered}
\left.f_{\mathrm{DPS}}=0.092_{-0.011}^{+0.005} \text { (stat. }\right)_{-0.037}^{+0.033} \quad \text { (syst.) } \\
\left.\sigma_{\mathrm{eff}}=14.9_{-1.0}^{+1.2} \quad \text { (stat. }\right)_{-3.8}^{+5.1} \quad \text { (syst.) } \mathrm{mb}
\end{gathered}
$$

JHEP11(2016)110

Constraints on the double parton scattering cross section from same-sign W boson pair production

Schematic diagram corresponding to the production of a same-sign W boson pair via the DPS process.

JHEP 02 (2018) 032

A first search for same-sign W boson pair production via double-parton scattering (DPS) in pp collisions at a center-of-mass energy of 8 TeV has been presented.

The analyzed data were collected by the CMS detector at the LHC during 2012 and correspond to an integrated luminosity of $19.7 \mathrm{fb}-1$.

The results presented here are based on the analysis of events containing two same-sign \mathbf{W} bosons decaying into either same-sign muon-muon or electron-muon pairs.

Several kinematic observables have been studied to identify those that can better discriminate between DPS and the single-parton scattering (SPS) backgrounds.

Summary

Data from the LHC provides a unique and rich environment to perform QCD studies.

From soft-QCD to very-high p_{T} jets, LHC detectors are testing QCD as never before!

This talk covered a small sample of results published recently:

Inelastic pp cross-section
Charged Particle Density
Charged Particle Multiplicity
The underlying event
Measurement of charged pion, kaon, and proton production
Production of multi-strange hadrons in high-multiplicity pp collisions
Measurement of inclusive jet and dijet cross-sections
Heavy flavor production
Study of dijet events with a large rapidity gap between the two leading jets
Double Parton Scattering

Extras...

- Essentially all physics at high-energy hadron colliders are connected to the interactions of quarks and gluons (small \& large transferred momentum).
- Hard processes (high-p p_{T}): well described by perturbative QCD
, Soft interactions (low- p_{T}): require non-perturbative phenomenological models
© Soft Interactions: Problems with strong coupling constant, $\alpha_{s}\left(\mathbf{Q}^{2}\right)$, saturation effects,...

Q On average, inelastic hadron-hadron collisions have low transverse energy, low multiplicity.

QCD at the LHC

13 TeV LHC parton kinematics

July 2015: LHcb announces the observation of exotic pentaquark particles!

$$
\Lambda_{b} \rightarrow J / \Psi K-p
$$

(tightly bound quark states?)

Studied the mass spectrum of J / Ψ p: can only be explained by pentaquarks!

Measurement of multi-particle azimuthal correlations in pp, p + Pb collisions

Comparison of the second-order azimuthal harmonic v_{2} obtained from the template fitting procedure in the 13 TeV $p p, 5.02 \mathrm{TeV} p p, 5.02 \mathrm{TeV} p+\mathrm{Pb}$ and $8.16 \mathrm{TeV} p+\mathrm{Pb}$ data, as a function of $N_{c h}{ }^{\text {rec }}$. The results are for $0.5<p_{T^{\mathrm{a}}, \mathrm{b}}<5 \mathrm{GeV}$. The error bars and shaded bands indicate statistical and systematic uncertainties, respectively.
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/HION/

The v2, v3, and v4 coefficients from long-range two-particle correlations as a function of $N^{\text {Noffline }}$ trk in $13 \mathrm{TeV} \mathrm{pp} \mathrm{(a)}, \mathrm{5.02} \mathrm{and} \mathrm{8.16} \mathrm{TeV} \mathrm{p+Pb} \mathrm{(b)}$. The results corrected by low-multiplicity subtraction are denoted as $v^{\text {sub }}{ }_{n}$. The lines show the v_{n} results before the subtraction of lowmultiplicity correlations.

Phys. Rev. Lett. 120, 092301 (2018)

Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$

The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared.

The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated.

The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decrease.

Activity	$N_{\text {ch }}$	$R[\mathrm{fm}]$	λ	$\delta\left[\mathrm{GeV}^{-1}\right]$
Low	$[8,18]$	$1.01 \pm 0.01 \pm 0.10$	$0.72 \pm 0.01 \pm 0.05$	$0.089 \pm 0.002 \pm 0.044$
Medium	$[19,35]$	$1.48 \pm 0.02 \pm 0.17$	$0.63 \pm 0.01 \pm 0.05$	$0.049 \pm 0.001 \pm 0.009$
High	$[36,96]$	$1.80 \pm 0.03 \pm 0.16$	$0.57 \pm 0.01 \pm 0.03$	$0.026 \pm 0.001 \pm 0.010$

JHEP12(2017)025

Measurement of antiproton production in pHe collisions at ${\sqrt{\mathrm{S}_{\mathrm{NN}}}}=110 \mathrm{GeV}$

Detector Coverage

2009

2012 Píle-up: 25 collísions

Heavy-ion collision

CMS Experiment at the LHC, CERM

