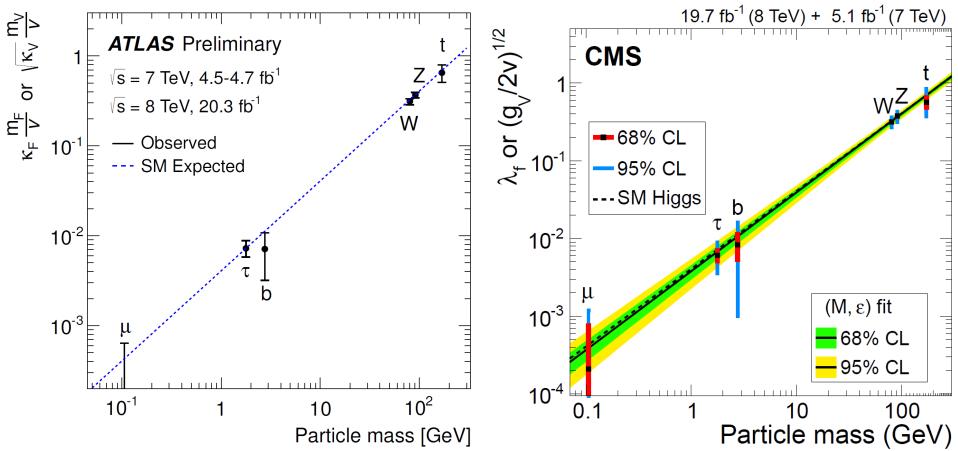
Semi-visible Exotic Higgs Decays


Felix Yu Johannes Gutenberg University, Mainz

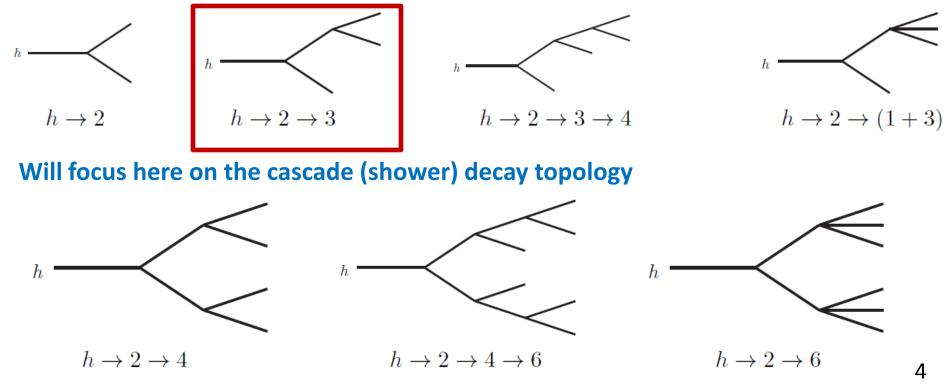
Phys. Rev. Lett. 112 (2014) 22, 221803, [arXiv:1309.6633 [hep-ph]] Phys. Rev. D90 (2014) 11, 115006, [arXiv:1407.0038 [hep-ph]] with Jinrui Huang, Tao Liu, Lian-Tao Wang

> WG3: Exotic Higgs Decays, Fermilab May 21, 2015

Motivation

• Thus far, all fits of Higgs couplings show consistency with the mass-coupling relation dictated in the SM

ATLAS-CONF-2015-007; CMS [1412.8662]

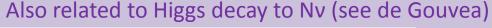

Motivation

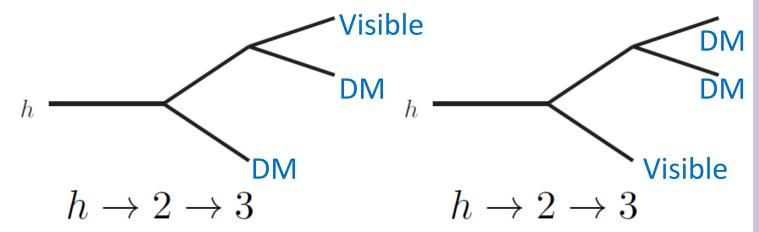
- Thus far, all fits of Higgs couplings show consistency with the mass-coupling relation dictated in the SM
 - Cannot directly measure the Higgs total width at the LHC
 - At best, have model dependent upper-limit constraints from ATLAS and CMS
 - (Have model independent lower limits)
- Numerically, the bottom Yukawa (at m_h) $\approx 1/60$
- A new light particle with even small couplings to the Higgs can induce a sizeable exotic Higgs decay

Exotic decays

Curtin, Essig, Gori, Jaiswal, Katz, Liu, Liu, McKeen, Shelton, Strassler, Surujon, Tweedie, Zhong PRD **90** (2014) 7, 075004 [1312.4992]

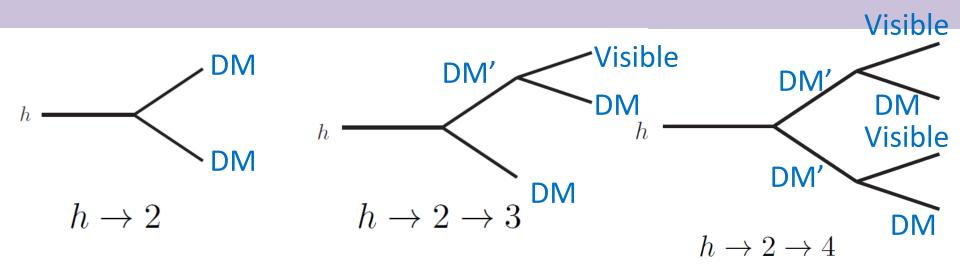
- Characterize exotic Higgs decays via
 - topologies from a sequence of two-body decays
 - nature of decay products
 - (i) all visible; (ii) all invisible; (iii) semi-visible

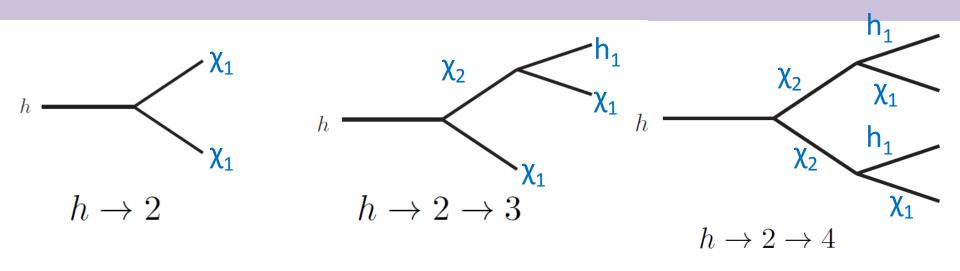



Outline

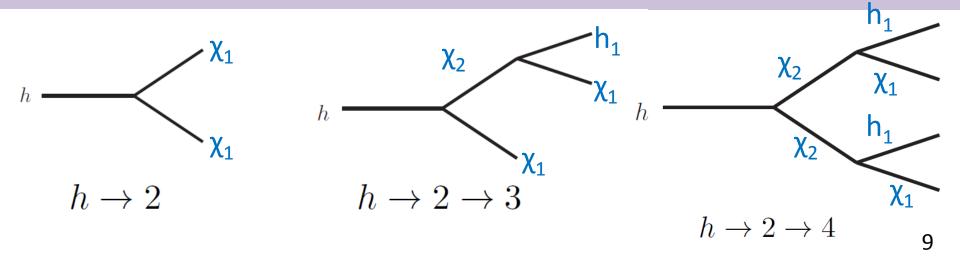
- Brief theory background for semi-visible decay channels – nearly PQ NMSSM¹ ¹Draper, Liu, Wagner, Wang, Zhang Phys. Rev. Lett. **106** 121805 (2011)
- Semi-visible topology and phenomenology
- LHC sensitivity studies
 - $-\mu\mu$ +MET channel
 - bb+MET channel
 - ττ+MET channel
- Conclusions

Semi-visible prompt decay channels


- Bottom up approach allows two different showers producing semi-visible decay in $h \rightarrow 2 \rightarrow 3$ topology
 - DM candidate is invisible particle, assume DM parity
 - Generally related to $h \rightarrow 2$ and $h \rightarrow 2 \rightarrow 4$ topologies
 - Intermediate particle is part of either DM sector or SM sector (assuming DM parity)


Relation to $h \rightarrow 2$ and $h \rightarrow 2 \rightarrow 4$

 From top down view, Higgs decays to DM sector particles can also motivate h→2→3 topology, more than the well-known h→2 decay


Relation to $h \rightarrow 2$ and $h \rightarrow 2 \rightarrow 4$: NMSSM

 In nearly-Peccei-Quinn NMSSM, DM is dominantly singlino, DM' is dominantly bino, and the gauge singlet scalar decays to fermion pairs

Relation to $h \rightarrow 2$ and $h \rightarrow 2 \rightarrow 4$: NMSSM

- Two-body decay to singlinos (h→2 decay) suppressed by mixing angles
- Two-body decay to binos (h→2→4 decay) suppressed by kinematic threshold
- Asymmetric decay to bino-singlino (h \rightarrow 2 \rightarrow 3 decay) dominant
- SM-like Higgs is second heaviest CP-even scalar
 - Two-body decay to h₁h₁ suppressed from PQ limit

Semi-visible h decay phenomenology

- In Higgs rest frame, can partition 125 GeV of energy to decay products
- For semi-visible decay, two decay products are DM candidates
 - Heavier DM masses lead to less energy for visible products
 - In NMSSM, h₁ inherits couplings from mixing with Higgs

 χ_2

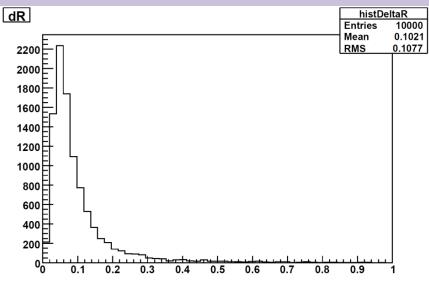
• Decays to heaviest fermion pair available

Contrast to fully visible decay, where search strategy focuses on correlated resonances

Triggering semi-visible h decays

- Generally need additional trigger
 MET correlated with Higgs production mode
- Leptonic decays for associated Vh production are simplest
 - For μμ+MET channel, use Wh mode, use trilepton trigger
 - For bb+MET and ττ+MET channels, use Zh mode, use dilepton trigger

µµ+MET channel


Good muon resolution to low p_T affords a clean signature
 m_{h1} (GeV) m₂ (GeV) m_{χ1} (GeV) m_{χ2} (GeV)

 $h_1 \to \mu^+ \mu^-$ 1 125 10 80

 $-Wh, W \rightarrow Iv$ production mode gives appreciable MET

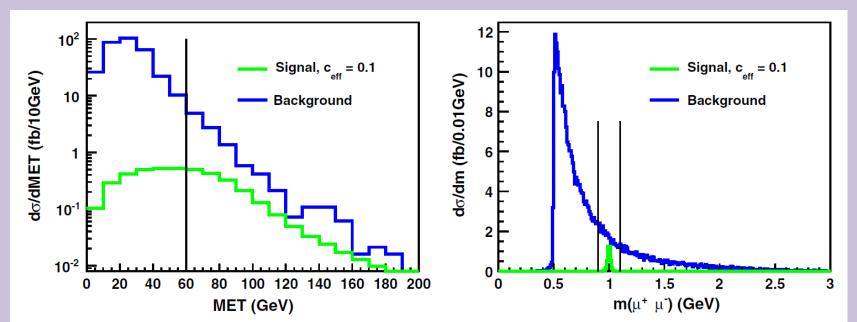
 Signal muons from h₁ decay are typically close, normal muon isolation requirement fails

Use $\Sigma p_T < 5$ GeV within $\Delta R < 0.4$ cone of each muon candidate, not including second muon candidate

$\mu\mu$ +MET channel – LHC constraints

- Lepton jets studies insensitive
 - Require displaced vertex for lepton jet
 - Four muons within single lepton jet
 - At least two lepton jets

JET ATLAS, PLB **721**, 32 (2013) ATLAS, PLB **719**, 299 (2013) ATLAS, New J. Phys. **15**, 043009 (2013)


• Resonances decaying to muon pairs

- Constrain 0.15-0.7 pb cross section for resonance masses below 1 GeV

- Our signal rate is 0.1 pb \times c_{eff} \approx 0.01 pb for c_{eff} = 10%
 - (c_{eff} is the effective branching fraction for the $h \rightarrow 2 \rightarrow 3$ decay topology and possibly enhanced Vh production scaling)

µµ+MET: LHC8 event selection

- Use p_{T1} > 20 GeV, $p_{T2,3}$ > 10 GeV, $\Delta R_{\mu\mu}$ < 0.2, within $|\eta|$ < 2.4
- MET > 60 GeV
- Primary background is W(γ*/Z), provides continuum dimuon mass spectrum

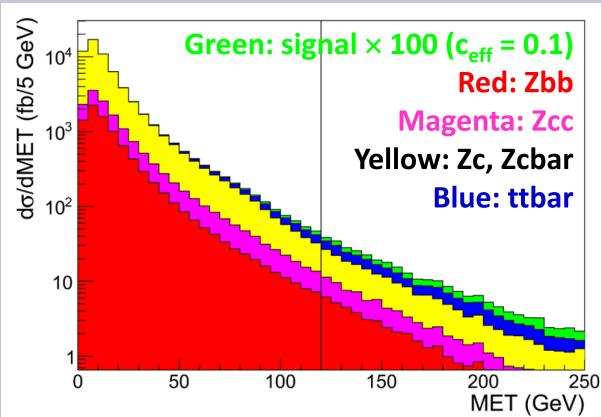
μμ+MET: LHC8 yields

- Use p_{T1} > 20 GeV, $p_{T2,3}$ > 10 GeV, $\Delta R_{\mu\mu}$ < 0.2, within $|\eta|$ < 2.4
- MET > 60 GeV
- Primary background is W(γ^{*}/Z), provides continuum dimuon mass spectrum
 - High local significance from dimuon mass window cut

Cuts and efficiencies	Wh_2	$W(\gamma^*/Z \to \mu^+\mu^-)$
Cross section (pb)	$0.149 \times c_{\rm eff}$	26.6
Lepton geometric, p_T ,	28.2%	1.22%
and isolation requirements		
$E_T \ge 60 \text{ GeV}$	12.5%	0.0403%
$0.9 \le m_{\mu^+\mu^-} \le 1.1 \text{ GeV}$ S, B, S/\sqrt{B} (20 fb ⁻¹ , $c_{\text{eff}} = 0.1$)	12.3%	0.0047%
S, B, S/\sqrt{B} (20 fb ⁻¹ , $c_{\rm eff} = 0.1$)	37,	, 32, 6.5 <i>σ</i>

bb+MET channel

- Much more difficult than dimuon channel
 - $-h_1$ decays to bb dominantly for m(h₁) > 10 GeV
 - Efficiency for tagging b-jets poor at low p_T
- Use Zh production, Z to dileptons
 - Signature is dileptonic Z, MET, b-tagged jet
 - For heavier h₁, signal becomes progressively easier
 - Can use jet substructure for semi-boosted bb resonance
- Benchmark

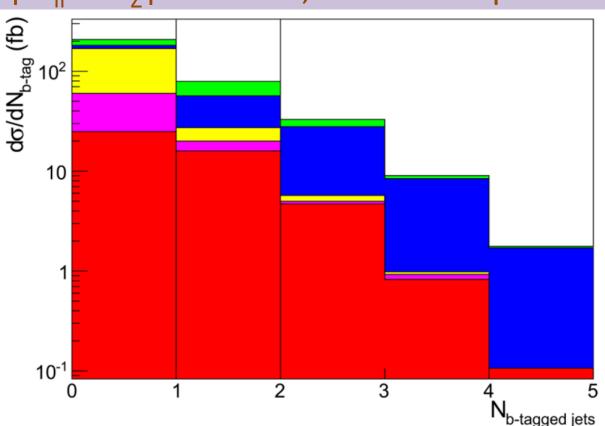

	m_{h_1}	m_{h_2}	m_{χ_1}	m_{χ_2}
$h_1 \rightarrow b\bar{b}$	20 GeV	125 GeV	30 GeV	80 GeV

bb+MET channel

- Many backgrounds with detector simulation
 - Z+jets, broken up into
 - Zg, g→bb
 - Zg, g→cc
 - Zc + Zcbar
 - ttbar
- Use 60% b-tagging efficiency, 10% charm mistagging rate, 1% light jet mistagging rate for the fat jet
 - (Could consider prospects for b-tagging of subjets or double-tagging fat jets)

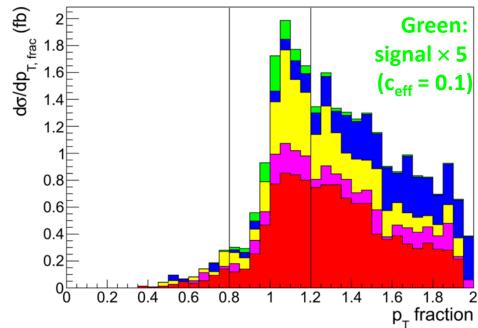
bb+MET: LHC14 event selection

- bb system is captured by C/A jet with R = 1.2
- Trigger on dileptons from Z – Each $p_T > 40$ GeV, $|m_{\parallel} - m_Z| < 10$ GeV, within acceptance
- MET > 120 GeV


bb+MET: LHC14 event selection

- bb system is captured by C/A jet with R = 1.2
- Trigger on dileptons from Z

- Each $p_T > 40$ GeV, $|m_{\parallel} - m_z| < 10$ GeV, within acceptance


- MET > 120 GeV
- N_{b-tags} = 1

 Jet p_T > 20 GeV

Semi-visible decays: Novel feature

- Introduce p_{T, frac} = p_T(h_{2,cand})/p_T(II_{sys}) to keep Higgs events balanced in p_T against Z boson
 - Want MET collimated with b-tagged jet since signal MET has a single cascade $p_T(h_2, \text{cand}) = p_T(b\text{-jet}) + |\mathcal{E}_T|$
 - Discriminates from backgrounds with neutrinos in separate decay chains
 2
- Subject to mismeasurement of jet p_T
- Use 0.8 < p_{T, frac} < 1.2

bb+MET: LHC14 yields

 Without using bb invariant mass selection, have marginal sensitivity with LHC14, 3 ab⁻¹

				-	
Cut and	Zh_2	Zbb	$Zc\overline{c}$	$Zc + Z\bar{c}$	$t\bar{t}$
Efficiencies	$0.098 \times c_{\text{eff}} \text{ pb}$	48.4 pb	32.8 pb	138.9 pb	41.8 pb
At least two SF, OS leptons with $p_T > 40$ GeV,					
within Z window	0.1946	0.1774	0.1707	0.1634	0.01193
MET > 120 GeV	5.547 E-2	9.597E-4	1.205E-3	4.213E-4	1.765E-3
$N_{b-\text{tags}} = 1$, jet $p_T > 20 \text{ GeV}$	2.303E-2	3.294E-4	1.231E-4	2.620E-5	7.058E-4
$0.8 < p_{T, \text{ frac}} < 1.2$	2.105 E-2	1.935E-4	4.265E-5	1.160E-5	7.565 E-4
Event Number (50 fb ⁻¹ , $c_{\text{eff}} = 0.5$)	40	213	53	64	26
$S/\sqrt{S+B}(50 \text{ fb}^{-1}, c_{\text{eff}} = 0.5)$		2.0σ			

TABLE V: Cut flow: Analysis cuts and efficiency table for the $h_1 \to b\bar{b}$ channel, $m_{h_1} = 20$, $\chi_1 = 30$, $\chi_2 = 80$ GeV. The decays $Z \to \ell^+ \ell^-$ and $W \to \ell \nu$, $\ell = e, \mu, \tau$ are included in the quoted cross sections.

 Rescaling to c_{eff} = 0.1 requires 1.2 ab⁻¹ of HL-LHC luminosity for 2.0σ sensitivity (w/o systematics)

bb+MET: LHC14 event selection

- Without using bb invariant mass selection, have marginal sensitivity with LHC14, 3 ab⁻¹
 - Different benchmark (with m(h₁) = 45 GeV) has better prospects, but requires tricky soft subjet reconstruction

Cut, efficiencies	Zh_2	$Zbar{b}$	$Zc\bar{c}$	$Zc + Z\bar{c}$	$t\overline{t}$	
Cross section (pb)	$0.09 \times c_{\rm eff}$	48.4	32.8	139	41.8	
Lepton cut	0.191	0.177	0.170	0.163	0.012	
$E_T > 80 \text{ GeV}$	8.31E-2	3.15E-3	4.41E-3	1.80E-3	4.57E-3	
$N_{b-\text{tags}} = 1$, jet $p_T > 20 \text{ GeV}$	3.78E-2	1.09E-3	4.88E-4	1.31E-4	1.86E-3	
$0.8 < p_{T, \text{frac}} < 1.2$	2.59E-2	3.35E-4	1.06E-4	3.59E-5	7.70E-5	
Two hardest subjets: $34 < m_{ii} < 46 \text{ GeV}$	3.48E-3	7.17E-6	2.44E-6	5.00E-7	1.44E-6	
	3.48E-3	7.17E-6	2.44E-6			

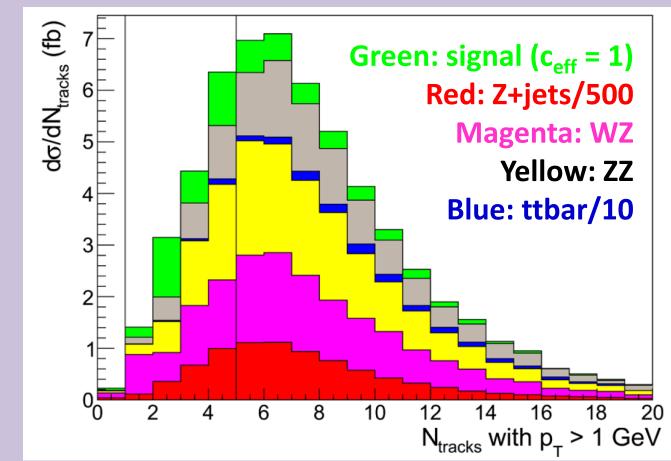
ττ+MET channel

- Even harder than bb+MET
 - Even more information lost to tau neutrinos
 - Studied hadronic tau decays, focus on identifying excess
 of Z (→II) + MET + 1-/3- prong charged tracks events
- Two leptons: each $p_{\rm T}$ > 40 GeV, $|\,m_{||}-m_{\rm Z}^{}\,|$ < 10 GeV, within acceptance
- MET > 75 GeV
- Veto b-jets, one jet $p_T > 20 \text{ GeV}$

TABLE II. Benchmark used for the collider analysis of $h_2 \rightarrow \tau^+ \tau^- + E_{\rm T}$.

	m_{h_1}	m_{h_2}	m_{χ_1}	m_{χ_2}
$h_1 \rightarrow \tau^+ \tau^-$	8 GeV	125 GeV	10 GeV	80 GeV

ττ+MET channel

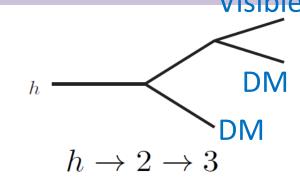

- Main backgrounds are
 - Z + jets (reduced by MET cut)
 - ttbar (reduced by Z mass window cut, b-jet veto)
 - WW + jets (reduced by Z mass window cut)
 - WZ, ZZ + jets (more or less irreducible)

Cut and	$Z + h_2$	$Z+$ jets, $Z \to \ell \ell$	$t\bar{t} \rightarrow b\ell^+ \nu \bar{b}\ell^- \nu$	$W^+W^- \to \ell^+ \nu \ell^- \nu$	$W^{\pm}Z \to \ell^{\pm}\nu\ell^{+}\ell^{-}$	$ZZ \to \ell^+ \ell^- \nu \nu$
Efficiencies	$0.098 \times c_{\rm eff}$ pb	593.4 pb	$41.82~\rm{pb}$	$2.412~\rm{pb}$	$0.3461~\rm pb$	$0.1299 \ \mathrm{pb}$
At least two SF, OS leptons with $p_T > 20$ GeV,						
within Z window	0.4389	0.4950	3.161E-2	3.151E-2	0.3113	0.4977
MET > 75 GeV	0.1632	1.803E-2	1.544E-2	9.002E-3	0.1057	0.2269
Require $N_{b-\text{tags}} = 0$, only one jet $p_T > 20 \text{ GeV}$	6.052 E-2	7.046E-3	4.03E-4	4.729E-3	4.226E-2	0.1313
Require $1-5$ tracks with $p_T > 1$ GeV	3.710E-2	2.739E-3	6.526E-5	1.464E-3	1.575E-2	4.712E-2
Event Number (500 fb ⁻¹ , $c_{\text{eff}} = 1.0$)	1800	8.10E+5	1400	1800	2700	3100
$S/\sqrt{S+B}(500 \text{ fb}^{-1}, c_{\text{eff}} = 1.0)$		2.0σ		•		

TABLE III: Cut flow table for Zh_2 , $Z \to \ell^+ \ell^-$, $h_2 \to \chi_1 \chi_1 \tau^+ \tau^-$. Cross sections for backgrounds include preselection cuts of at least one jet with $p_T > 20$ GeV and leptons with $p_T > 20$ GeV. Leptons from decays of gauge bosons include e, μ , and τ .

ττ+MET channel

 Inability to reconstruct h₁ resonance makes it very difficult to identify signal kinematics



Semi-visible exotic decays

 Trigger objects from associated production collimate Higgs decay products

More dangerous since MET aligned with visible products

- Best prospects for hard showers with large mass splittings (light DM particles)
 - Cascade decays allow DM candidate to recoil against Visible objects in Higgs frame
- Reconstructing light, semi-boosted resonances is critical for good sensitivity

- Overlaps with fully visible $h \rightarrow 2 \rightarrow 4$ topology

Conclusions

- Semi-visible exotic decays is a challenging class of exotic Higgs decays
 - May be only accessible production of the visible resonances and DM candidates
- Advances in experimental techniques could greatly push sensitivity
 - MET calibration in semi-visible Higgs decay
 - Contrast to SUSY cascade decays, ttbar
 - Semi-boosted resonance reconstruction with jet substructure
 - Multi-b-tagging of fat jets, b-tagging for subjets
 - Generic displaced vertices in cone jets

Dark Light Higgs scenario

• Nearly PQ limit of NMSSM

$$\begin{split} \mathbf{W} &= \lambda \mathbf{S} \mathbf{H}_u \mathbf{H}_d + \mathcal{O}(\kappa), \\ V_{\text{soft}} &= m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_S^2 |S|^2 \\ &- (\lambda A_\lambda H_u H_d S + \text{H.c.}) + \mathcal{O}(\kappa), \end{split}$$

– Take κ/λ \rightarrow 0, A_κ \rightarrow 0

- Peccei-Quinn symmetry explicitly broken by к
- Moderate or small λ , $\lambda < 0.1$
- The Higgs potential arises from the above soft breaking terms, SUSY gauge interactions and F-terms

- Generate vevs for $\mathsf{h}_{\mathsf{u}},\mathsf{h}_{\mathsf{d}},$ and $\mathsf{N} o \mu \equiv \lambda \langle N
angle$

Dark Light Higgs scenario

Higgs mass in nearly PQ limit

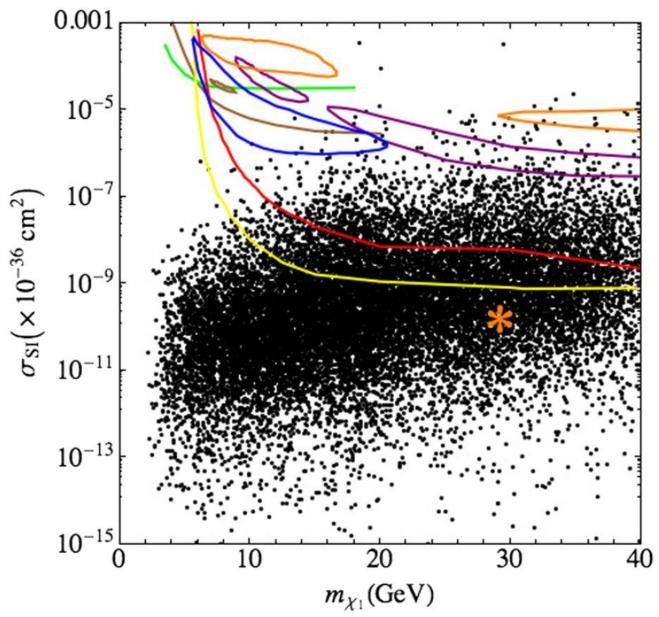
– Recall $\kappa/\lambda \rightarrow 0$, $A_{\kappa} \rightarrow 0$

$$(m_{h_1}^2)_{\text{tree}} \approx -4v^2 \varepsilon^2 + \frac{4v^2 \lambda^2}{\tan^2 \beta} + \frac{\kappa A_{\kappa} \mu}{\lambda} + \frac{4\kappa^2 \mu^2}{\lambda^2}$$

 $\varepsilon \equiv \frac{\lambda \mu}{m_Z} \varepsilon', \qquad \varepsilon' \equiv \frac{A_{\lambda}}{\mu \tan \beta} - 1$

• So ε cannot be too large, and can scan over small ε values

- Vacuum stability condition gives an upper bound on ε


$$\Delta m_{h_1}^2 \approx \frac{\lambda^2 \mu^2}{2\pi^2} \log \frac{\mu^2 \tan \beta^3}{m_Z^2}$$
$$\varepsilon_{\max}^2 \approx \frac{1}{4\nu^2} \left(\frac{4\lambda^2 \nu^2}{\tan^2 \beta} + \frac{\kappa A_{\kappa} \mu}{\lambda} + \frac{4\kappa^2 \mu^2}{\lambda^2} + \Delta m_{h_1}^2 \right)$$

Dark Light Higgs phenomenology

- Three CP-even Higgses (h₁, h₂, h₃), two CP-odd Higgses (a₁, a₂)
 - $-h_1, a_1, \chi_1$ are all light (O(1)-O(10) GeV)
 - Heaviest state is strongly down type, with mass $m_{h3}^2 \sim m_{Hd}^2 \sim A_{\lambda}^2$

DLH direct detection

- Bulk of
- χ_1 range
- is light
- mass,
- low σ_{SI}

