A Selection of Models with Modified (Quark) Yukawa Couplings

Fady Bishara

Exotic Higgs Decays Workshop Fermilab – May 22nd, 2015

Based on analysis in: F.B., J. Brod, P. Uttayarat, and J. Zupan [arXiv:1504.04022]

Overview

Will consider the following 'selection' of models

- Dim. 6 operators with MFV
- Multi-Higgs-doublet models with natural flavor conservation
- Type II two Higgs doublet model
- Giudice-Lebedev model (+ modification)
- Models with a pNGB Higgs

Motivation

A fit to the data where all Higgs couplings are fixed to their SM values except for one light-quark Yukawa at a time gives (Kagan, Perez, Petriello, Soreq, Stoynev, and Zupan [arXiv:1406.1722])

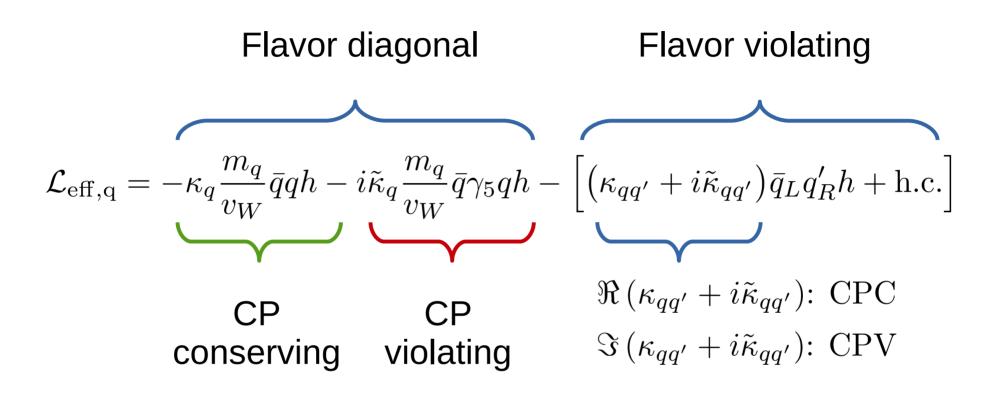
 $\begin{aligned} |\kappa_u| &< 0.98 m_b/m_u \\ |\kappa_d| &< 0.93 m_b/m_d \\ |\kappa_s| &< 0.70 m_b/m_d \end{aligned}$

However, such large values are not likely to be obtained in a complete model.

This motivates a survey of models of new physics with viable flavor structures

Mod. Yukawas are interesting because, e.g.: DM, dipole moms., 3 etc.

Setup



In the SM, $\kappa_q = 1$ while $\tilde{\kappa}_q = \kappa_{qq'} = \tilde{\kappa}_{qq'} = 0$

For lepton Yukawas, see, e.g.:

Dery, Efrati, Nir, Soreq, & Susic [arXiv:1408.1371]; Dery, Efrati, Hiller, Hochberg, & Nir [arXiv:1304.6727]; Dery, Efrati, Hochberg, & Nir [arXiv:1302.3229]

Minimal Flavor Violation

- $\triangleright \mathcal{L}_{SM}$ enjoys an enhanced symmetry G_F in the limit $m_q \rightarrow 0$
- $\triangleright \ G_F = SU(3)_Q \times SU(3)_U \times SU(3)_D$
- Symmetry is retained if Yukawa matrices are promoted to spurions that transform under G_F as

$$Y_U \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}), \qquad Y_D \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$

▷ The Yukawa interactions $u^{c}Y_{U}^{\dagger}qH$, $d^{c}Y_{D}^{\dagger}qH^{c}$ are then formally invariant under G_{F}

The SM Yukawas are the only source of flavor breaking.

¹Chivukula & Georgi (1987); Hall & Randall (1990); Buras, Gambino, Gorbahn, Jager & Silvestrini (2001); D'Ambrosio, Giudice, Isidori & Strumia (2002);

Dim. 6 operators with MFV

$$\mathcal{L}_{\rm EFT} = Y_u \bar{Q}_L H^c u_R + Y_d \bar{Q}_L H d_R + \frac{Y'_u}{\Lambda^2} \bar{Q}_L H^c u_R (H^{\dagger} H) + \frac{Y'_d}{\Lambda^2} \bar{Q}_L H d_R (H^{\dagger} H) + \text{h.c.}$$

$$M_{u,d} = \frac{v_W}{\sqrt{2}} \left(Y_{u,d} + Y'_{u,d} \frac{v_W^2}{2\Lambda^2} \right), \qquad y_{u,d} = Y_{u,d} + 3Y'_{u,d} \frac{v_W^2}{2\Lambda^2}$$

Coefficients are different,
 $\rightarrow M_{u,d} \& y_{u,d}$ are not simult. diagonalizable

Coefficients of the D6 operators

Flavor basis

$$Y'_{u} = a_{u}Y_{u} + b_{u}Y_{u}Y_{u}^{\dagger}Y_{u} + c_{u}Y_{d}Y_{d}^{\dagger}Y_{u} + \cdots$$

$$Y'_{d} = a_{d}Y_{d} + b_{d}Y_{d}Y_{d}^{\dagger}Y_{d} + c_{d}Y_{u}Y_{u}^{\dagger}Y_{d} + \cdots$$
Mass basis
$$Y'_{u} = \begin{bmatrix} a_{u} + b_{u}Y_{u}Y_{u}^{\dagger} + c_{u}VY_{d}Y_{d}^{\dagger}V_{d}^{\dagger}\end{bmatrix} Y_{u} + \cdots$$

$$Y'_{d} = \begin{bmatrix} a_{d} + b_{d}Y_{d}Y_{d}^{\dagger} + c_{d}VY_{u}Y_{u}Y_{u}^{\dagger}V_{d}^{\dagger}\end{bmatrix} Y_{d} + \cdots$$

The Yukawas are then given by $y_u = \left[1 + \frac{v_W^2}{\Lambda^2} \left(a_u + b_u (y_{\rm SM}^u)^2 + c_u V (y_{\rm SM}^d)^2 V^{\dagger} + \cdots\right)\right] y_{\rm SM}^u$ $y_d = \left[1 + \frac{v_W^2}{\Lambda^2} \left(a_d + b_d (y_{\rm SM}^d)^2 + c_d V (y_{\rm SM}^u)^2 V^{\dagger} + \cdots\right)\right] y_{\rm SM}^d$

MHDM with NFC [§]

For *N* Higgs doublets with the Natural Flavor Conservation (NFC) assumption, only one Higgs doublet is allowed to couple to up-type and one to down-type fermions.

All the vevs must satisfy the sum rule

$$v_W^2 = \sum_i v_i^2$$

and the neutral scalar component of the ith doublet is

 $\left(v_i + h_i\right)/\sqrt{2}$

The fields h_i are linear combinations of the mass eigenstates

$$h_i = V_{hi} h + \dots$$

Finally, the Yukawas are modified by

$$\kappa_u = \kappa_c = \kappa_t = V_{hu} \frac{v_W}{v_u} , \qquad \qquad \kappa_d = \kappa_s = \kappa_b = V_{hd} \frac{v_W}{v_d}$$

⁸ Glashow and Weinberg [Phys.Rev. D15, 1958 (1977)]; Paschos [Phys.Rev. ⁸ D15, 1966 (1977)]

Type II 2HDM [§]

This is a special case of MHDM with NFC with

$$v_u = \sin \beta v_W, \qquad v_d = \cos \beta v_W$$

The mixing of h_{u} and h_{d} into the mass eigenstates h and H is given by

$$\begin{pmatrix} h_u \\ h_d \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

The up- and down-type quark Yukawas are then modified as follows

$$\kappa_u = \kappa_c = \kappa_t = \frac{\cos \alpha}{\sin \beta},$$

$$\kappa_d = \kappa_s = \kappa_b = -\frac{\sin \alpha}{\cos \beta},$$

[§] See, e.g., H. Haber and G. Kane [Phys.Rept. 117 (1985) 75-263]; J. Gunion, H. Haber, G. Kane, S. Dawson [Front.Phys. 80 (2000) 1-448]

Higgs-dependent Yukawa couplings §

$$Y_{ij}(H) = \sum_{n=0}^{\infty} c_{ij}^{(n)} \left(\frac{H^{\dagger}H}{M^2}\right)^n \text{ where } c_{ij}^{u,d} \sim \mathcal{O}(1), \ n_{ij}^{u,d} \in \mathbb{Z}^*$$

$$\mathcal{L}_q = c_{ij}^u \left(\frac{H^{\dagger}H}{M^2}\right)^{n_{ij}^u} \bar{Q}_{L,i} u_{R,j} H^c + c_{ij}^d \left(\frac{H^{\dagger}H}{M^2}\right)^{n_{ij}^d} \bar{Q}_{L,i} d_{R,j} H + \text{h.c.}$$

Ansatz: $n_{ij}^{u,d} = a_i + b_j^{u,d}$ with $a = (1,1,0), \ b^d = (2,1,1), \ b^u = (2,0,0)$ This fixes the expansion parameter $\epsilon \equiv \frac{v_W^2}{M^2} = \frac{m_b}{m_t} \approx \frac{1}{60}$

The Yukawas take the form

$$y_{ij}^{u,d} = (2n_{ij}^{u,d} + 1)(y_{ij}^{u,d})_{\rm SM}$$

Note that $y_{ij}^{u,d}$ are not diagonal in the mass basis

[§]G. Giudice and O. Lebedev [arXiv:0804.1753]

GL2: a modified GL model

Why? Because in simplest GL, $\kappa_b \sim 3$ and is excluded at 6.8 σ (CMS)

Solution: extend Higgs sector $\rightarrow H_u$, H_d (i.e. like a Type II 2HDM)

Gives acceptable Higgs phenomenology provided that

$$\kappa_b = -\sin\alpha/\cos\beta \simeq 1$$

 $\kappa_t = \cos\alpha/\sin\beta \simeq 1$

Ansatz: $n_{ij}^{u,d} = a_i + b_j^{u,d}$ with $a = (1,1,0), \ b^d = (1,0,0), \ b^u = (2,0,0)$

pNGB Higgs [§]

Assuming that the fermions couple linearly to composite operators (D. B. Kaplan [Nucl.Phys. B365 (1991) 259-278])

$$\lambda_{L,i}^q \bar{Q}_{L,i} O_R^i + \lambda_{R,j}^u \bar{u}_{R,j} O_L^j + h.c.$$

In the case where each SM fermion is coupled to only one composite operator (K. Agashe and R. Contino [arXiv:0906.1542])

$$Y_u \bar{Q}_L H u_R + Y'_u \bar{Q}_L H u_R \frac{(H^{\dagger} H)}{\Lambda^2} + \dots \quad \rightarrow \quad c^u_{ij} P(h/f) \, \bar{Q}^i_L H u^j_R$$

With
$$P(h/f) = a_0 + a_2(h/f)^2 + ...$$
 and $f \sim O(v_W)$

And so the corrections to the Yukawa couplings from these operators are flavor diagonal

$$\kappa_q \sim 1 + \mathcal{O}\left(\frac{v_W^2}{f^2}\right)$$

[§] Dugan, Georgi, and Kaplan [Nucl.Phys. B254, 299 (1985)]; Georgi, Kaplan, and Galison ¹² [Phys.Lett. B143, 152 (1984)]; Kaplan, Georgi, and Dimopoulos [Phys.Lett. B136, 187 (1984)]

pNGB Higgs – flavor violation

Flavor violation originates from the kinetic terms

$$\bar{q}_L i D \hspace{-.5mm}/ q_L \frac{H^{\dagger} H}{\Lambda^2}, \ \bar{u}_R i D \hspace{-.5mm}/ u_R \frac{H^{\dagger} H}{\Lambda^2}, \dots$$

These operators arise after integrating out vector resonances with mass

 $M_* \sim \Lambda$

The NDA estimates for these contributions is

$$\kappa_{ij}^u \sim 2y_*^2 \frac{v_W^2}{M_*^2} \left(\lambda_{L,i}^q \lambda_{L,j}^q \frac{m_{u_j}}{v_W} + \lambda_{R,i}^u \lambda_{R,j}^u \frac{m_{u_i}}{v_W} \right)$$

There is also a contribution the to the flavor diagonal Yukawas

$$\Delta \kappa_{q_i} \sim 2y_*^2 \frac{v_W^2}{M_*^2} \left[\left(\lambda_{L,i}^q \right)^2 + \left(\lambda_{R,i}^u \right)^2 \right]$$

Predictions for the diag. up-type yukawas

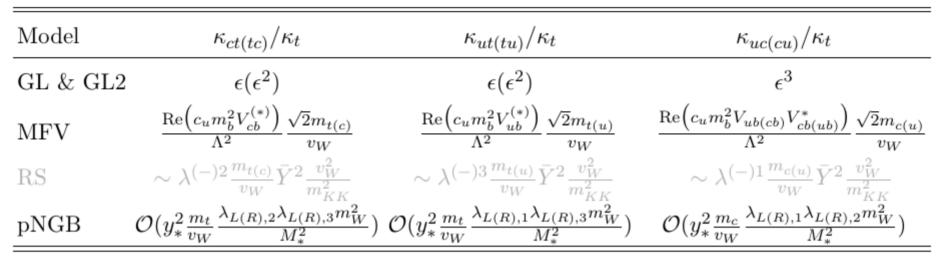
Model	κ_b	$\kappa_{s(d)}/\kappa_b$	$\tilde{\kappa}_b/\kappa_b$	$\tilde{\kappa}_{s(d)}/\kappa_b$
SM	1	1	0	0
NFC	$V_{hd}v_W/v_d$	1	0	0
MSSM	$-\sin \alpha / \cos \beta$	1	0	0
GL	$\simeq 3$	$\simeq 5/3(7/3)$	$\mathcal{O}(1)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
GL2	$-\sin \alpha / \cos \beta$	$\simeq 3(5)$	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
MFV	$1 + \frac{\operatorname{Re}(a_d v_W^2 + 2c_d m_t^2)}{\Lambda^2}$	$1 - \frac{2 \operatorname{Re}(c_d) m_t^2}{\Lambda^2}$	$\frac{\Im(a_d v_W^2 + 2c_d m_t^2)}{\Lambda^2}$	$\frac{\Im(a_d v_W^2 + 2c_d V_{ts(td)} ^2 m_t^2)}{\Lambda^2}$
RS	$1 - \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$
pNGB 1	$+ \mathcal{O}\left(rac{v_W^2}{f^2} ight) + \mathcal{O}\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$

Predictions for the diag. down-type yukawas

Model	κ_b	$\kappa_{s(d)}/\kappa_b$	$ ilde{\kappa}_b/\kappa_b$	$\tilde{\kappa}_{s(d)}/\kappa_b$
\mathbf{SM}	1	1	0	0
NFC	$V_{hd}v_W/v_d$	1	0	0
MSSM	$-\sin \alpha / \cos \beta$	1	0	0
GL	$\simeq 3$	$\simeq 5/3(7/3)$	$\mathcal{O}(1)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
GL2	$-\sin \alpha / \cos \beta$	$\simeq 3(5)$	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
MFV	$1 + \frac{\operatorname{Re}(a_d v_W^2 + 2c_d m_t^2)}{\Lambda^2}$	$1 - \frac{2 \operatorname{Re}(c_d) m_t^2}{\Lambda^2}$	$\frac{\Im(a_d v_W^2 + 2c_d m_t^2)}{\Lambda^2}$	$\frac{\Im(a_d v_W^2 + 2c_d V_{ts(td)} ^2 m_t^2)}{\Lambda^2}$
RS	$1 - \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$
pNGB	$1 + \mathcal{O}\left(\frac{v_W^2}{f^2}\right) + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$	$1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$\mathcal{O}\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$

Predictions for the off-diagonal couplings

Up-type quarks



Down-type quarks

Model	$\kappa_{bs(sb)}/\kappa_b$	$\kappa_{bd(db)}/\kappa_b$	$\kappa_{sd(ds)}/\kappa_b$
GL & GL2	$\epsilon^3(\epsilon^2)$	ϵ^2	$\epsilon^3(\epsilon^4)$
MFV	$\frac{\operatorname{Re}\left(c_d m_t^2 V_{ts}^{(*)}\right)}{\Lambda^2} \frac{\sqrt{2}m_{s(b)}}{v_W}$	$\frac{\operatorname{Re}\left(c_d m_t^2 V_{td}^{(*)}\right)}{\Lambda^2} \frac{\sqrt{2}m_{d(b)}}{v_W}$	$\frac{\operatorname{Re}\left(c_d m_t^2 V_{ts(td)}^* V_{td(ts)}\right)}{\Lambda^2} \frac{\sqrt{2}m_{s(d)}}{v_W}$
RS	$\sim \lambda^{(-)2} \frac{m_{b(s)}}{v_W} \bar{Y}^2 \frac{v_W^2}{m_{KK}^2}$	$\sim \lambda^{(-)3} \frac{m_{b(d)}}{v_W} \bar{Y}^2 \frac{v_W^2}{m_{KK}^2}$	$\sim \lambda^{(-)1} \frac{m_{s(d)}}{v_W} \bar{Y}^2 \frac{v_W^2}{m_{KK}^2}$
pNGB	$\mathcal{O}(y_*^2 \tfrac{m_b}{v_W} \tfrac{\lambda_{L(R),2} \lambda_{L(R),3} m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2 \frac{m_b}{v_W} \frac{\lambda_{L(R),1} \lambda_{L(R),3} m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2 \frac{m_s}{v_W} \frac{\lambda_{L(R),1} \lambda_{L(R),2} m_W^2}{M_*^2})$

Conclusions

 Modified light-quark Yukawa couplings in a selection of NP models do not saturate the bounds obtained from global fits

 In the models considered in this talk, flavor violating couplings are subleading to the flavor conserving ones

