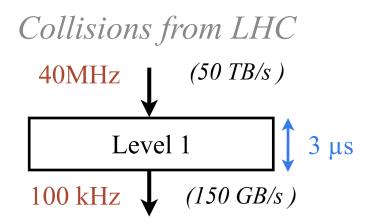


New Trigger Capabilities with FTK

John Alison

University of Chicago

- Reminder of Current Trigger Scheme
- FTK: Track Trigger Upgrade
- Physics in the Pile-up
- Potential applications for exotics Higgs



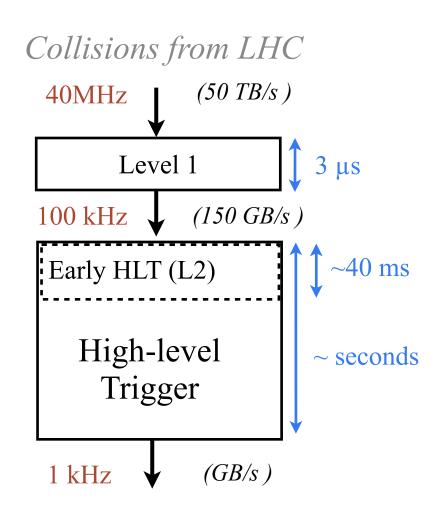
- LHC provides orders of magnitude more collisions than can save to disk.
- Interesting physics is incredibly rare: (Higgs \sim 1/billion)

Current ATLAS Trigger system

Level-1

- Keeps 1/400 input events in \sim 3 μ s
- Custom hardware.
- Decisions using Calo/Muon detectors
- Defines *ROI*. Narrow η - ϕ segments

- LHC provides orders of magnitude more collisions than can save to disk.
- Interesting physics is incredibly rare: (Higgs \sim 1/billion)

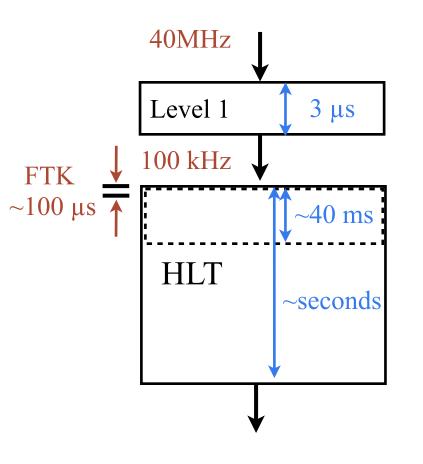

Current ATLAS Trigger system

Level-1

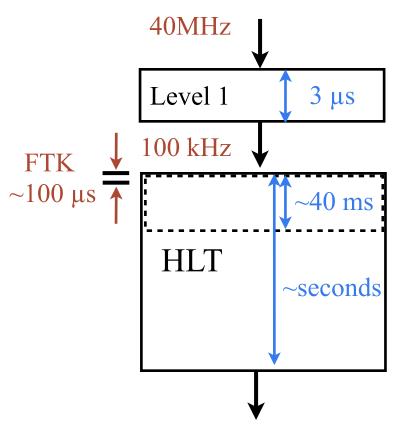
- Keeps 1/400 input events in ${\sim}3~\mu s$
- Custom hardware.
- Decisions using Calo/Muon detectors
- Defines *ROI*. Narrow η - ϕ segments

High-Level Trigger

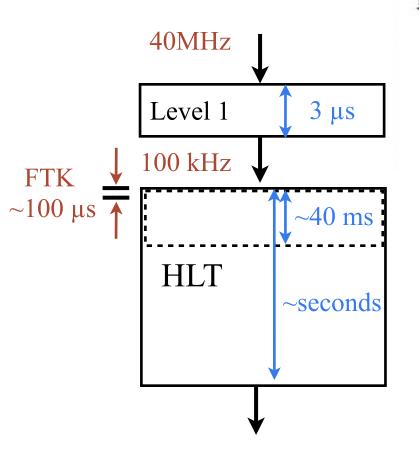
- Keeps 1/100 events which pass L1.
- Adds tracking information
- Processing seeded on L1 ROIs
- 2 reconstruction flavors
 Quick and Coarse / Offline-quality

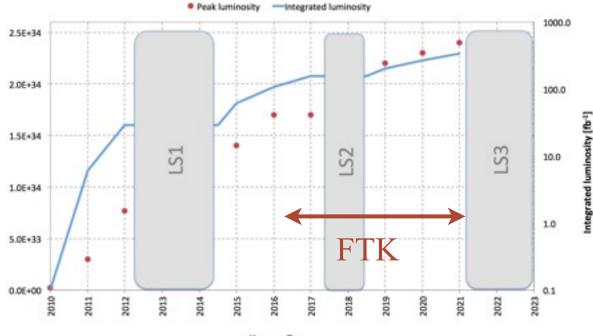

- Track trigger upgrade
- Hardware-based.
- Run at full L1 output rate
- O(100 μ s) latency

- Track trigger upgrade
- Hardware-based.
- Run at full L1 output rate
- O(100 μ s) latency



- Track trigger upgrade
- Hardware-based.
- Run at full L1 output rate
- O(100 μ s) latency


- Provides tracks as input to the HLT.
- Full-scan event tracking w/Si detectors
- No reliance on L1 ROI
- Track finding (baseline):
 - $-P_T > \sim 1 \text{ GeV} / |d0| < 2 \text{ mm} / |z0| < 110 \text{ mm}$
 - 5 track parameter / list of hits / $\chi 2$ estimate
 - ~90 % efficient wrt full offline tracking



- Track trigger upgrade
- Hardware-based.
- Run at full L1 output rate
 O(100 µs) latency

- Provides tracks as input to the HLT.
- Full-scan event tracking w/Si detectors
- No reliance on L1 ROI
- Track finding (baseline):
 - $-P_T > \sim 1 \text{ GeV} / |d0| < 2 \text{ mm} / |z0| < 110 \text{ mm}$
 - 5 track parameter / list of hits / $\chi 2$ estimate
 - ~90 % efficient wrt full offline tracking

FTK: Role in ALAS Trigger.

- -) Enhancing Current Trigger:
 - b-jet / τ Identification
 - Improve ROIs already looking at.
 - Look at more ROIs
 - Seed-less track-jet finding tagging.
 - Tool for understanding / mitigating effects of pile-up in the trigger.
 - Improve jets / missing energy measurements.
 - Vertex counting
 - Particle-flow

-) Provide New Trigger Capabilities

-) Enhancing Current Trigger:

- b-jet / τ Identification

Has been priority for ATLAS

- Improve ROIs already looking at.
- Look at more ROIs
- Seed-less track-jet finding tagging.
- Tool for understanding / mitigating effects of pile-up in the trigger.

FTK: Role in ATLAS Trigger.

- Improve jets / missing energy measurements.
- Vertex counting
- Particle-flow

-) Provide New Trigger Capabilities

-) Enhancing Current Trigger:

- b-jet / τ Identification

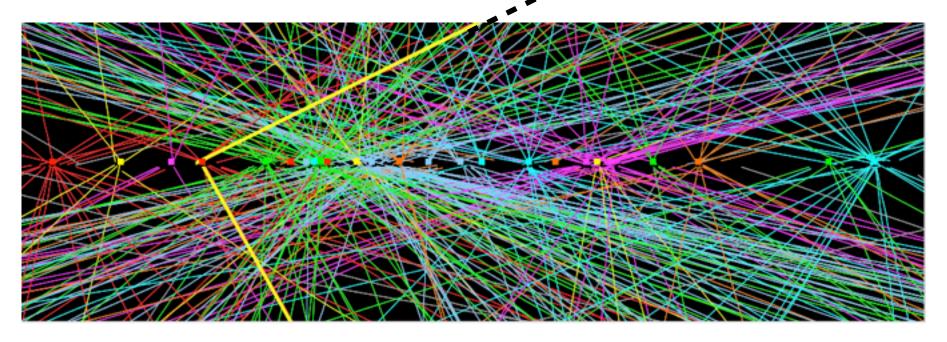
Has been priority for ATLAS

- Improve ROIs already looking at.
- Look at more ROIs
- Seed-less track-jet finding tagging.
- Tool for understanding / mitigating effects of pile-up in the trigger.
 - Improve jets / missing energy measurements.
 - Vertex counting
 - Particle-flow

-) Provide New Trigger Capabilities

Focus of rest of the talk.

FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions $(\mu \sim 80 @ 100 \text{kHz})$

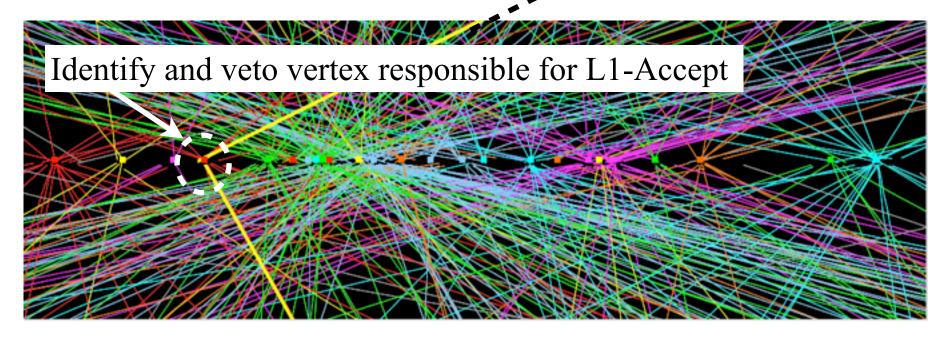


FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions $(\mu \sim 80 @ 100 \text{kHz})$

Example:

L1 Accept from Muon

← FTK will reconstruct full event (~80 collisions) −



FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions $(\mu \sim 80 @ 100 \text{kHz})$

Example:

L1 Accept from Muon

FTK will reconstruct full event (~80 collisions) -

FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions $(\mu \sim 80 @ 100 \text{kHz})$

Example:

L1 Accept from Muon

Identify and veto vertex responsible for L1-Accept → Other μ(~80) vertices reconstructed by FTK w/ no L1-bias → FTK will reconstruct full event (~80 collisions) →

FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions (μ ~80 @ 100kHz) Another way of putting it:

unbiased pp collisions at $\mathscr{L} \sim (1/400) \times 3.10^{-34} \text{ cm}^2 \text{ s}^1$

• Effective pre-scale from L1-accept

FTK: Providing New Capabilities.

Physics in the Pile-up

FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions (μ ~80 @ 100kHz) Another way of putting it: unbiased pp collisions at $\mathscr{L} \sim (1/400) \times 3 \cdot 10^{-34} \text{ cm}^{-2} \text{ s}^{-1}$

Unique opportunity for signatures which:-a) are hard to trigger on at L1.-b) have distinctive tracker activity.

FTK: Providing New Capabilities.

Physics in the Pile-up

FTK will be reconstructing ~ 10 MHz of *unbiased* pp-collisions (μ ~80 @ 100kHz) Another way of putting it: unbiased pp collisions at $\mathscr{L} \sim (1/400) \times 3 \cdot 10^{34} \text{cm}^2 \text{ s}^1$

Unique opportunity for signatures which:

- -a) are hard to trigger on at L1.
- -b) have distinctive tracker activity.

Rules of thumb:

Start winning when competing with:

ATLAS/CMS searches/measurements w/ $\varepsilon_{L1} < 1/400$.

LHCb searches/measurements w/ $\varepsilon_{L1} < 1/8$.

- *Physics in pile-up* near-miss for exotic higgs.
- $h \rightarrow$ (soft tracker activity) can live off W(ℓv)*h* production $\sigma(Wh(\rightarrow lv)) \times Acceptance(50\%) / \sigma(ggF) \sim 1/300 (> 1/400)$

- *Physics in pile-up* near-miss for exotic higgs.
- $h \rightarrow$ (soft tracker activity) can live off W(ℓv)*h* production $\sigma(Wh(\rightarrow lv)) \times Acceptance(50\%) / \sigma(ggF) \sim 1/300 (> 1/400)$
- For exotic higgs, advantage in paring FTK with L1 items. eg: -) L1_VBF jets: VBF + ($h \rightarrow$ (soft)) -) L1_MeT: $Zh \rightarrow$ (vv+soft) -) L1_EM: ggF $\rightarrow h \rightarrow \gamma$ (soft) (eg: $h \rightarrow \gamma \varphi$) -) L1_Lepton: W($\ell \nu$)h when single ℓ pre-scaled in HLT

- Track Multiplicities.
 - N(tracks) > XX GeV
 - N(isolated tracks) > Y GeV
- Track jets: (B-Tagging/ 3-prong τ -tagging (?))
- Charged particles resonances
- Displaced vertices ???
 - Baseline Tracking |d0| < 2mm
 - Can potentially extend with limited efficiency.

- Others ???

- Track Multiplicities.
 - N(tracks) > XX GeV
 - N(isolated tracks) > Y GeV
- Track jets: (B-Tagging/ 3-prong τ -tagging (?))
- Charged particles resonances
- Displaced vertices ???
 - Baseline Tracking |
 - Can potentially ext

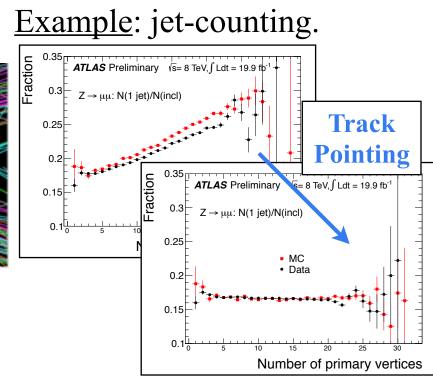
- Others ???

Should Target:

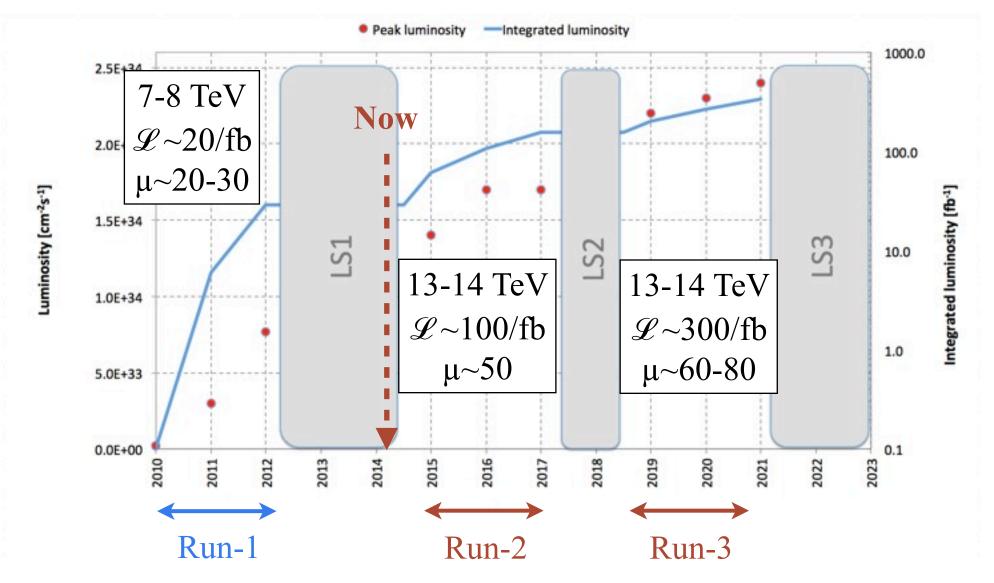
- Output rate O(10 Hz)
- HLT rejections of:
 - -10e4 @ full L1 output rate
 - 10e3 w/L1 item ~10kHz

- Adding triggering capabilities, changes potential physics reach.

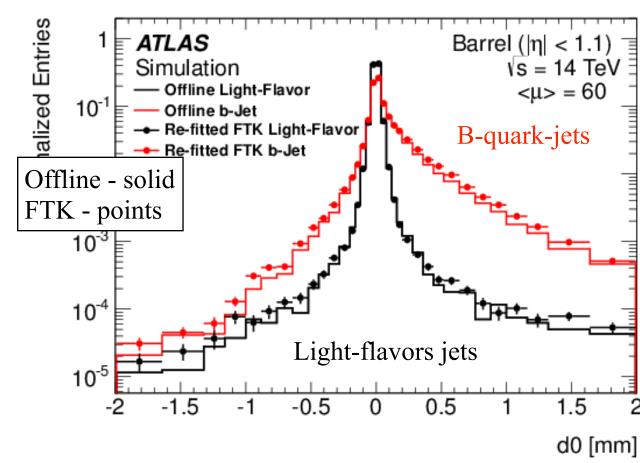
- FTK will reconstruct an enormous unbiased *pp* dataset
 Rate ~3 orders of magnitude larger than Run1.
- Potential opportunity for signals w/little-no L1 signature



- Found the Higgs.
- Excluded simplest expected SM extensions.
- Excluded even more *unexpected* extensions to the SM.
- Learned how to live with pile-up ...



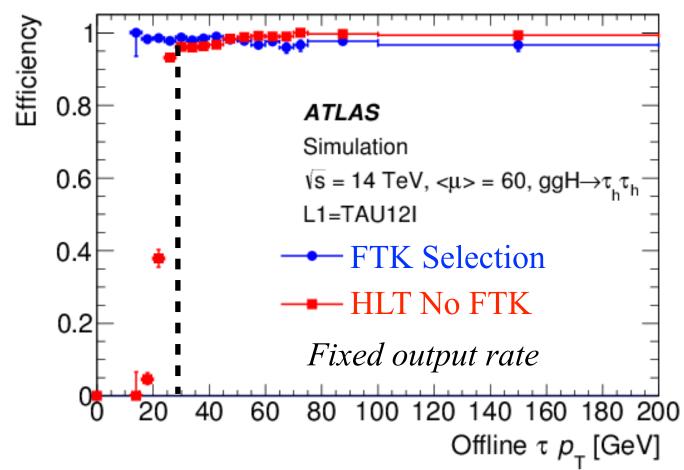
... use the tracker. (Its how we're able to color the lines.)



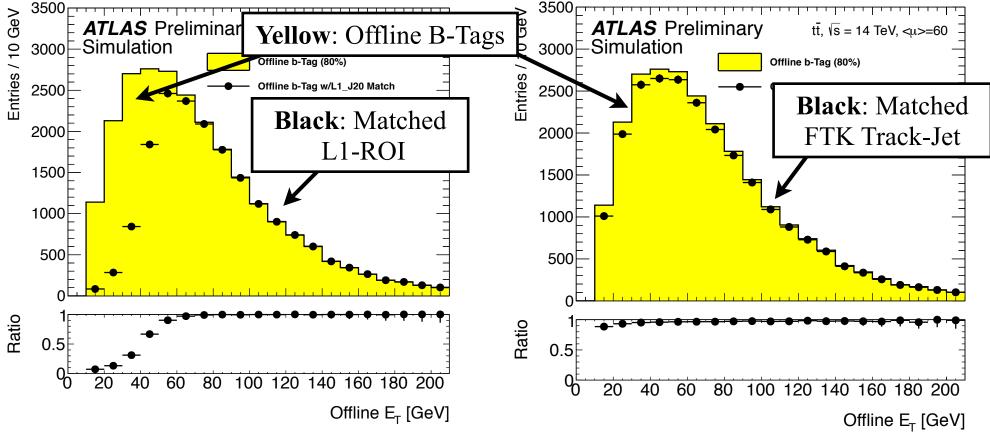
- b-jet / τ Identification
 - Improve ROIs already looking at.
 - Look at more ROIs
 - Seed-less track-jet finding tagging.

FTK: Enhancing Current Trigger.

- b-jet / τ Identification
 - Improve ROIs already looking at.
 - Look at more ROIs
 - Seed-less track-jet finding tagging.

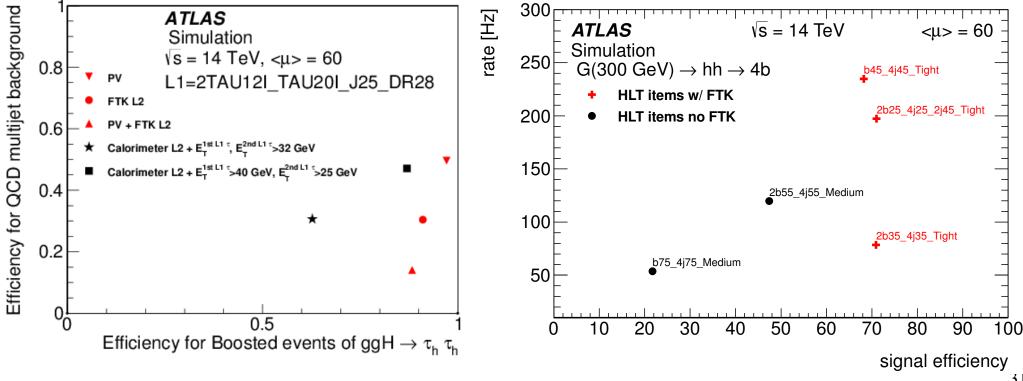


FTK: Enhancing Current Trigger.


- b-jet / τ Identification
 - Improve ROIs already looking at.
 - Look at more ROIs
 - Seed-less track-jet finding tagging.

- b-jet / τ Identification

- Improve ROIs already looking at.
- Look at more ROIs
- Seed-less track-jet finding tagging.



b-jet / τ Identification Improve ROIs already looking at.

- Look at more ROIs
- Seed-less track-jet finding tagging.

<u>Upshot</u>

$SVT \to FF \to L1-Track$			
	SVT	FTK	L1-Track
Event Rate	25 kHz	100 kHz	~500 kHz
#-Patterns	6 M	1,000 M	O(B)
Detector Layers	5 (4-SVX / 1-COT)	12 (8 + 4)	9-13
Track DoF	3	5	5
Input data	1,000 hits/event	>200,000 hits/event	O(M) hits/event
Latency	O(10µs)	O(100 µs)	O(10 µs)