LFV Higgs decays and FCNC at CMS experiment

Silvia Taroni for the CMS Collaboration

Exotic Higgs decays at Fermilab 21st-22nd May 2015

Outline

- LFV Higgs decay:
 - search for $H \rightarrow \mu \tau$ at CMS (8 TeV)
- Flavour-changing-neutral-current (FCNC)
 - search for associate production t-H at CMS (8 TeV)

Lepton-flavour-violating Higgs decays

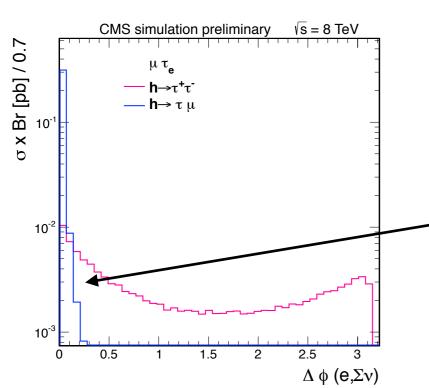
- The Standard Model (SM) forbids LFV decays of the Higgs boson
 - No off-diagonal element in the Yukawa matrix
- Alternative models foresee LFV decays
 - General MHDM: flavor violating decays allowed (tree level)
 - 2HDM Type-I: impose a discrete symmetry to couple only one doublet to fermions
 - 2HDM Type-II: impose a discrete symmetry to couple Q=2/3 quarks to one doublet and Q=-1/3 quarks to the other
 - 2HDM Type-III: no discrete symmetries are introduced, but phenomenological constraints on the flavour changing couplings

$$Y = \begin{bmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{bmatrix}$$

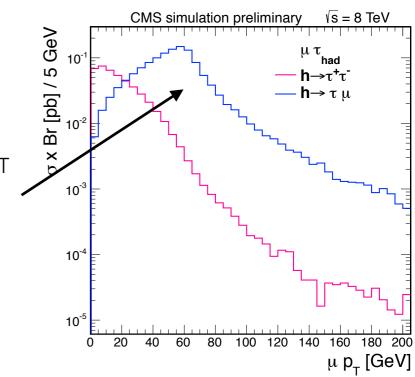
$$Y = \begin{bmatrix} Y_{ee} & 0 & 0\\ 0 & Y_{\mu\mu} & 0\\ 0 & 0 & Y_{\tau\tau} \end{bmatrix}$$

Coupling constraints from indirect searches $Y_{\mu\tau}$ constrained by 10^{0} indirect searches $\overline{Y_{\tau\mu}^* P_L + Y_{\mu\tau} P_R}$ $Y^*_{\mu\tau}P_L + Y_{\tau\mu}P_R$ $Y_{\mu\tau} < O(10^{-2})$ $\tau \rightarrow 3e$ (approx.) 10^{-1} Our LHC lim it $\frac{1}{2}$ 10^{-1} (ATLAS 7 TeV, 4.7 fb) from <u>arXiv:1209.1397v2</u> 10^{0} $\rightarrow 3\mu$ (approx 10^{-3} Y_{µe} constrained 10^{-1} 10^{-4} by $\mu \rightarrow e\gamma$ search $|Y_{\tau\mu}|$ Our LHC-lim it $Y_{\mu e} < O(10^{-6})$ (ATLAS 7 TeV, 4.7 fb⁻¹) 10^{-} 10^{-2} 10^{1} 10^{-2} 10^{-3} 10^{-1} 10^{0} 10^{-5} 10° $|Y_{e\tau}|$ 10^{0} 10^{-1} M $\rightarrow \overline{M}$ 10^{-3} Y_{et} constrained by 10^{-2} indirect searches 10^{-1} 10^{0} 10^{-3} 10^{-2} I µe 10^{-3} $Y_{eT} < O(10^{-2})$ $|Y_{\mu\tau}|$ BR(h→ 10^{-} 3e (approx 10^{-5} it does not contain 10^{-6} CMS measurement 10^{-1} $10^{-7} \overline{10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1}}$

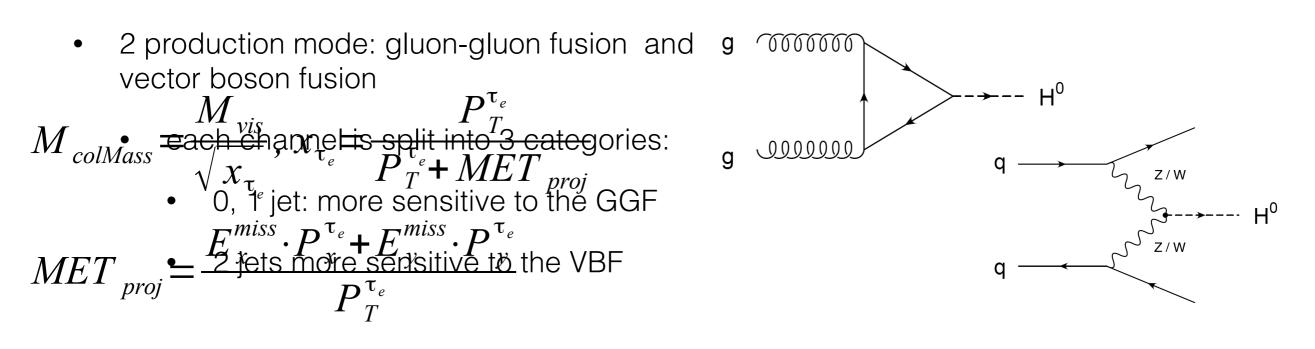
4


 $|Y_{e\mu}|$

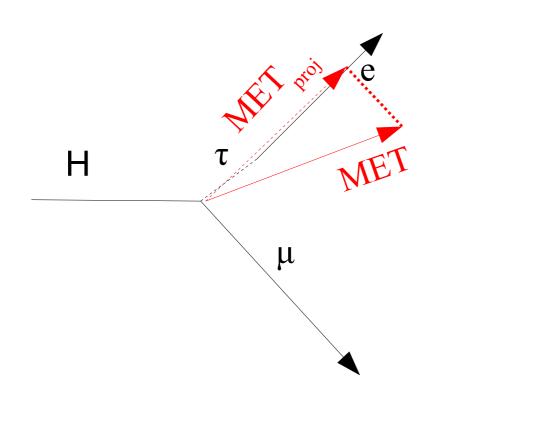
CMS H→µ⊤ search


- Assumption: $m_H = 125 \text{ GeV}$
- 2 channels: $\tau \rightarrow e$ and $\tau \rightarrow hadrons$

• Similar signature to SM $H \rightarrow \tau \tau$, but



- prompt decay of leptons from H, therefore harder p_τ spectrum: able to use Single lepton trigger
 - Collinear decays of the tau, less neutrinos and missing transverse energy



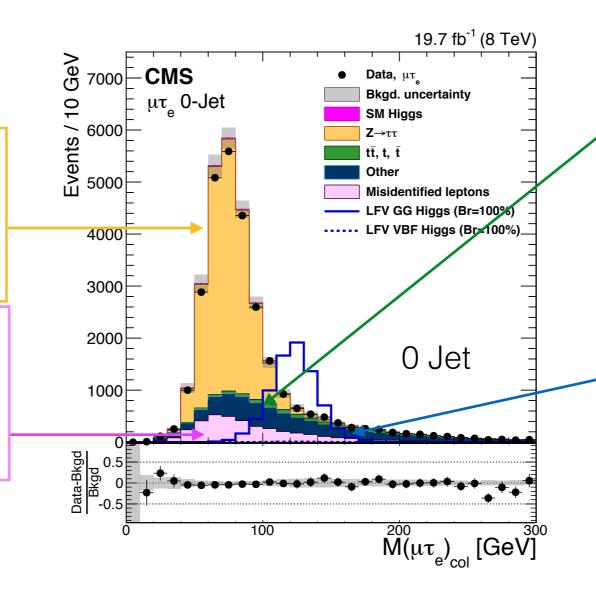
CMS analysis strategy

Mass reconstruction: •

- Assume neutrinos are collinear with tau direction and thus with the lepton
- Collinear mass approximation (projection method)

$$M_{colMass} = \frac{M_{vis}}{\sqrt{x_{\tau}}}, \qquad x_{\tau} = \frac{p_T^{\tau}}{p_T^{\tau} + MET_{proj}}$$
$$MET_{proj} = \frac{E_x^{miss} \cdot p_x^{\tau} + E_y^{miss} \cdot p_y^{\tau}}{p_T^{\tau}}$$

Backgrounds: $H \rightarrow \mu \tau_e$


Z→TT: • Normalization from MC • Shape from

Data Driven Bkg

 Shape from PFEmbedding method
 Dominant in 0,1 jet cat.

W+Jets/QCD Multijets:

- extracted from data (control region)
- Shape from antiisolated lepton events

single t, tt:

 Shape from MC simulation, normalisation cross checked with a control region
 Important in 2jet cat.

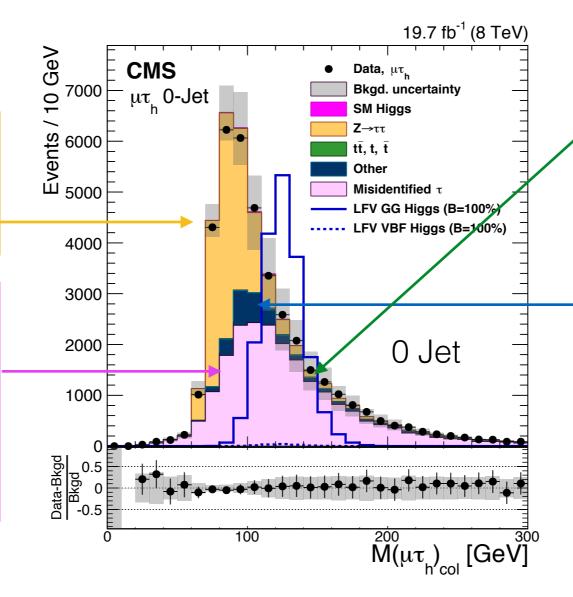
EWK Dibosons (WW) + jets:

- Normalisation (NLO) and shape from MC simulation
 W+ jets + y^(*), Z→ee :
- Normalisation and shape from MC simulation

plot not from final selections

for clarity: $BR(H \rightarrow \mu \tau) = 100\%$

Backgrounds: $H \rightarrow \mu \tau_{had}$


Data Driven Bkg

Ζ→тт:

- Normalization from MC
- Shape from
 PFEmbedding method

W+Jets/QCD Multijets:

- extracted from data (control region)
- Shape from antiisolated lepton events
 Dominant background in all the categories

tī, single t:Normalisation and

shape from MC simulation

EWK Dibosons (WW) + jets:

- Normalisation (NLO) and shape from MC simulation
 Z→ee :
- Normalisation and shape from MC simulation

plot not from final selections

for clarity: $BR(H \rightarrow \mu \tau) = 100\%$

Signal region

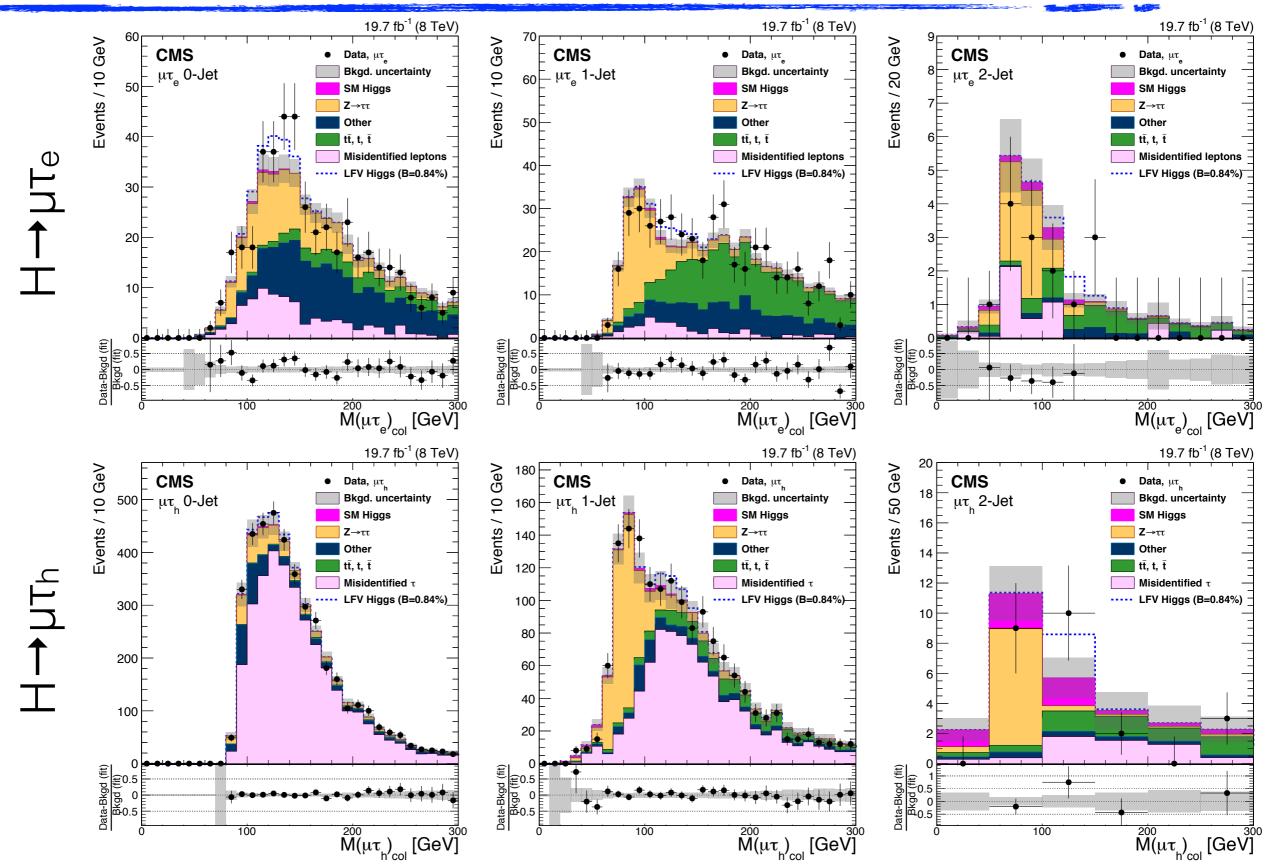
signal region cuts

Variable	E	$H \to \mu \tau$	e	$H \to \mu \tau_{had}$		
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_T^{\mu} > [\text{GeV}]$	50	45	25	40	35	30
$p_T^e > [\text{GeV}]$	10	10	10	-	-	-
$p_T^{\tau} > [\text{GeV}]$	-	-	-	35	40	40
$\Delta \phi_{\vec{\mu} - \tau_{had}} >$	-	-	-	2.7	-	-
$\Delta \phi_{\vec{e}-\vec{E_T}} <$	0.5	0.5	0.3	-	-	-
$\Delta \phi_{\vec{e}-\vec{\mu}} >$	2.7	1.0	-	-	-	-
$M_T(e) < [\text{GeV}]$	65	65	25	-	-	-
$M_T(\mu) > [\text{GeV}]$	50	40	15	-	-	-
$M_T(\tau) < [\text{GeV}]$	-	-	-	50	35	35

selected events

	Sample	$H \to \mu \tau_{had}$			$H \to \mu \tau_e$		
		0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
	Fakes	1858.1 ± 558.8	362.9 ± 110.0	0.5 ± 0.5	41.5 ± 17.3	16.1 ± 6.8	1.1 ± 0.7
	$Z \to \tau \tau$	198.8 ± 11.0	50.5 ± 3.5	0.4 ± 0.2	65.0 ± 3.0	38.6 ± 2.0	1.3 ± 0.2
	ZZ,WW	47.0 ± 8.0	14.6 ± 2.6	0.3 ± 0.2	40.8 ± 6.6	21.2 ± 3.5	0.7 ± 0.2
	$W\gamma$	_	_	—	2.0 ± 2.1	1.9 ± 1.9	_
	$Z \to ee \text{ or } \mu\mu$	94.5 ± 25.2	17.6 ± 6.7	0.1 ± 0.1	1.6 ± 0.8	1.8 ± 0.8	_
	$t\bar{t}$	2.5 ± 0.6	24.3 ± 3.2	0.7 ± 0.3	4.8 ± 0.7	30.0 ± 3.4	1.8 ± 0.3
	t, \overline{t}	2.7 ± 1.2	19.9 ± 3.9	0.4 ± 0.5	1.9 ± 0.2	6.8 ± 0.8	0.2 ± 0.1
	SM Higgs background	7.0 ± 1.3	4.9 ± 0.7	1.9 ± 0.7	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1
	Sum of backgrounds	2210.4 ± 559.6	494.7 ± 110.4	4.3 ± 1.1	159.4 ± 18.9	118.1 ± 8.9	5.6 ± 0.9
BR=0.84% →	LFV Higgs signal	69.7 ± 17.0	29.7 ± 6.7	3.0 ± 1.0	24.2 ± 5.7	13.6 ± 3.1	1.2 ± 0.4
	data	2255.0 ± 47.5	506.0 ± 22.5	8.0 ± 2.8	180.0 ± 13.4	128.0 ± 11.3	6.0 ± 2.4

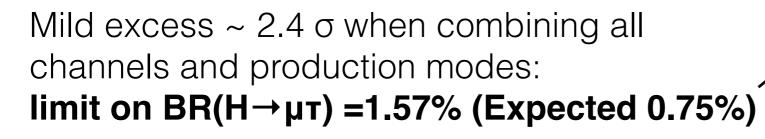
Systematics

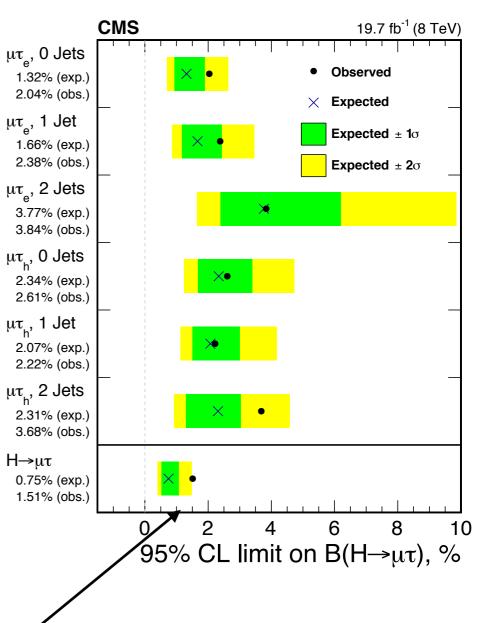


Systematic Uncertainty		$H \rightarrow \mu \tau_e$			$H \to \mu \tau_{had}$		
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet	
electron trigger/ID/isolation	3%	3%	3%	-	-	-	
muon trigger/ID/isolation	2%	2%	2%	2%	2%	2%	
hadronic tau efficiency	-	-	-	9%	9%	9%	
luminosity	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%	
$Z \to \tau \tau$ background	3+3*%	3+5*%	3+10*%	3+5*%	3+5*%	3+10*%	
$Z \to \mu \mu, ee$ background	30%	30%	30%	30%	30%	30%	
misidentified muon and electron background	40%	40%	40%	-	-	-	
misidentified hadronic tau background	-	-	-	30+10*%	30%	30%	
WW, ZZ+jets background	15%	15%	15%	15%	15%	65%	
$t\bar{t}$ +jets background	10 %	10 %	10+10*%	10 %	$10 \ \%$	10+33*%	
$W + \gamma$ background	$100 \ \%$	100 %	$100 \ \%$	-	-	-	
B-tagging veto	3%	3%	3%	-	-	-	
Single top production background	10 %	10 %	10 %	10 %	$10 \ \%$	10%	

Uncertainty	Gluor	-Gluon I	Jusion	Vector Boson Fusion			
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet	
parton density function	+9.7%	+9.7%	+9.7%	+ 3.6%	+3.6%	+3.6%	
renormalization scale	+8 %	+10 %	-30%	+4 %	+1.5%	+2%	
underlying event/parton shower	+4%	-5%	-10%	+10%	0%	-1%	

Systematic	$H \to \mu \tau_e$	$H \to \mu \tau_{had}$
Hadronic Tau energy scale	-	3%
Jet Energy scale	3-7%	3-7%
Unclustered energy scale	10%	10 %
$Z(\tau\tau)$ Bias	100%	-


signal region: M_{coll}



Limits on BR

Expected limits						
	0 Jet	1 Jet	2 Jets			
	(%)	(%)	(%)			
$\mu \tau_e$	$< 1.32 \ (\pm \ 0.67)$	$< 1.66 \ (\pm \ 0.85)$	$< 3.77 (\pm 1.92)$			
$\mu \tau_{had}$	$< 2.35 \ (\pm \ 1.20)$	$< 2.10 \ (\pm \ 1.07)$	$< 1.94 \ (\pm 0.99)$			
μau		$< 0.75 (\pm 0.38)$				
Observed limits						
$\mu \tau_e$	< 2.04	< 2.38	< 3.84			
μau_{had}	< 2.94	< 2.11	< 3.29			
$\mu \tau$		< 1.57				
Best fit branching fractions						
$\mu \tau_e$	$0.87^{+0.66}_{-0.62}$	$0.81^{+0.85}_{-0.78}$	$0.05^{+1.58}_{-0.97}$			
$\mu \tau_{had}$	$0.72^{+1.18}_{-1.15}$	$0.03^{+1.07}_{-1.12}$	$1.24^{+1.09}_{-0.88}$			
μau	$0.89_{-0.37}^{+0.40}$					

Limits on Yukawa coupling $Y_{\mu\tau}$

Interpretation of the constraint on $B(H \rightarrow \mu \tau)$ to LFV Yukawa coupling:

$$\Gamma(H \to l^{\alpha}l^{\beta}) = \frac{m_{H}}{8\pi} (|Y_{l^{\beta}l^{\alpha}}|^{2} + |Y_{l^{\alpha}l^{\beta}}|^{2})$$

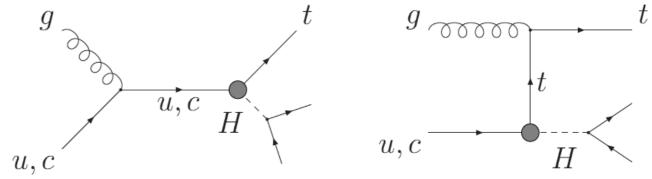
$$BR(H \to \mu\tau) = \frac{\Gamma(H \to l^{\alpha}l^{\beta})}{\Gamma(H \to l^{\alpha}l^{\beta}) + \Gamma_{SM}}$$
where $\Gamma_{SM} = 4.1 \text{ MeV}$

$$\sqrt{|Y_{\mu\tau}|^{2} + |Y_{\tau\mu}|^{2}} < 3.6 \times 10^{-3}$$

$$\sum_{\substack{i=1 \\ j \neq i \\ 0^{4} \\ 0^{4} \\ 0^{4} \\ 0^{3} \\ 0^{2} \\ 10^{4} \\ 0^{2} \\ 0^{4} \\ 0^{4} \\ 0^{2} \\ 10^{3} \\ 0^{2} \\ 10^{4} \\ 0^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{4} \\ 10^{4} \\ 10^{2} \\ 10^{4} \\ 10^{$$

Other channels and prospect for Run

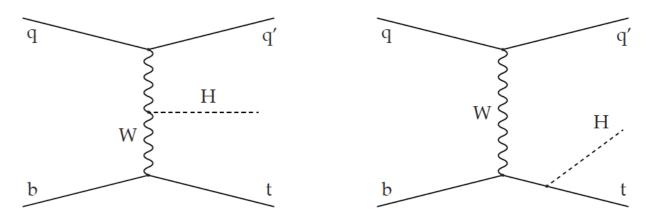
- Other channels under approval for summer conferences
 - H→eτ in muonic and hadronic tau decays. Same strategy. m_H=125 GeV
 - H→µe. 110 GeV< m_H < 160 GeV
- Prospect for Run2
 - Larger background: top-related background cross sections grow faster than Higgs cross section.
 - Harsher pile up conditions
 - Ongoing studies...


	$13 \mathrm{TeV} / 8 \mathrm{TeV}$
H (ggf)	2.28
H (vbf)	2.38
$t\overline{t}$	3.25
t (t-channel)	2.56
t (tW-channel)	3.21

scale factor

FCNC in t-H production

- Top flavour changing neutral current are suppressed in the SM
 - GIM suppression relaxed in models beyond the SM

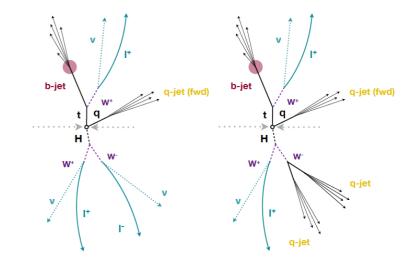

$$\Gamma(t \to qH) = \frac{\alpha}{32s_W^2} |g_{qt}|^2 m_t \left(1 - \frac{M_H^2}{m_t^2}\right)^2$$

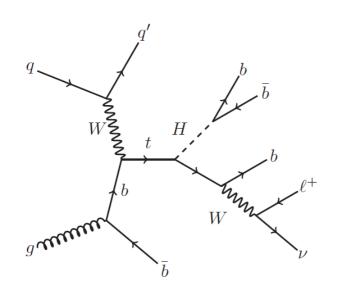
 $BR(t \rightarrow qH) = 3.88 \times 10^{-2} g_{qt}^2$

from arxiv 0409342v4

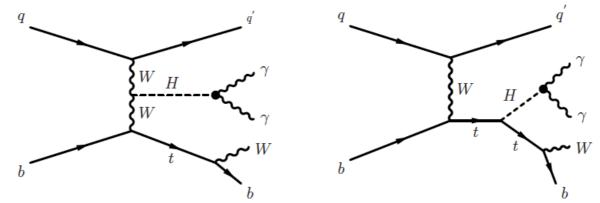
FCNC in t-H production at CMS

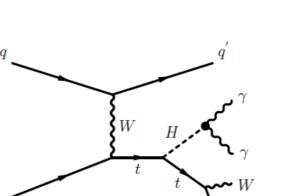
- CMS searches for associate production of a single top quark and a Higgs Boson
- In the SM, as the couplings of the Higgs boson to the W boson and the top quark have opposite-sign:




- destructive interference: production cross section at NLO ~18fb
- A negative Higgs boson coupling to fermions is still allowed (but disfavoured) by global fits
 - constructive interference: up to 15-fold increase of t-H production cross section

CMS t-H analyses


tHq in leptonic states: $H \rightarrow WW$, $H \rightarrow \tau \tau$ two categories: 3 leptons and 2 leptons same sign + 2 light quark jets from Ws HIG-14-026



tHq with H $\rightarrow \gamma \gamma$ HIG-14-015

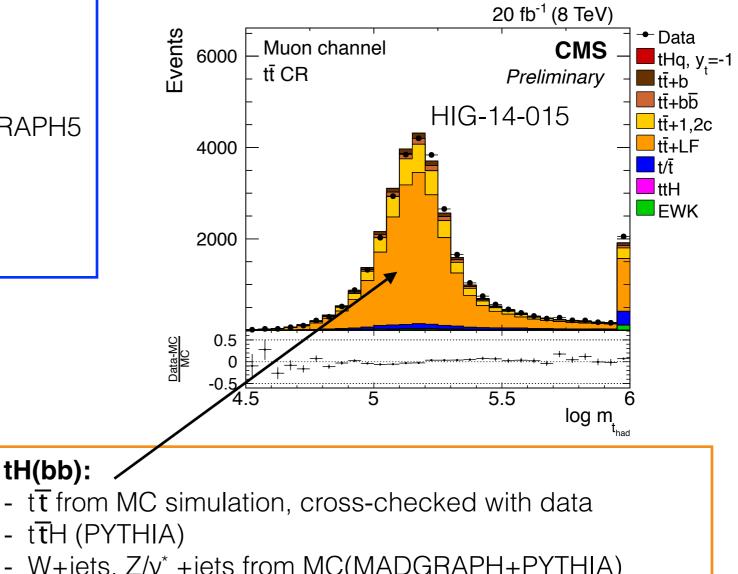
tHq with H→bb two categories: 3 or 4 b-jets HIG-14-001

Backgrounds

tH(II):

- tt and charge-mis-id evt from data
- ttH (PYTHIA)
- $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}\gamma$, $t\bar{t}\gamma^*$, $t\bar{t}WW$, tbZ from MADGRAPH5
- WW, WZ, ZZ, W[±]W[±]qq,W[±]W[±](DPI) from MADGRAPH5
- WWW,WWZ,WZZ from MADGRAPH5

Signal simulation:


- 5-flavour scheme. MADGRAPH5 + PHYTIA6 with CTEQ6L1

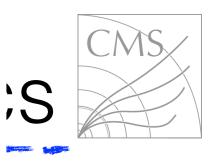
tH(yy):

- $t\bar{t}H$ from MC simulation (MADGRAPH5)
- WH, ZH from MC simulation (PHYTIA)
- $\gamma\gamma$ +jets, γ +jets from $m_{\gamma\gamma}$ sidebands
- $t\gamma\gamma$, $t\overline{t}\gamma\gamma$ from $m_{\gamma\gamma}$ sidebands

Signal simuation:

MADGRAPH5

- W+jets, Z/γ^* +jets from MC(MADGRAPH+PYTHIA)
- single-t (t, tW, s channels) from MC (POWHEG+PYTHIA)
- WW, WZ, ZZ from MC (PHYTHIA)
- QCD Multijet from data


Signal simulation:

18

- 4-flavour scheme, MADGRAPH5 + PHYTIA6 (TAUOLA)

$\begin{array}{c} \underset{\substack{W^{\pm}W^{\pm}qq}{W^{\pm}W^{\pm}qq} & 4.60 \pm 0.68 \\ \hline W^{\pm}W^{\pm}Qq} & 4.60 \pm 0.68 \\ \hline W^{\pm}W^{\pm}W^{\pm}Qq} & 4.60 \pm 0.68 \\ \hline W^{\pm}W^{\pm}Qq} & 4.60 \pm 0.68 \\ \hline$

• tH(II):

Process	μμ	еµ	$\ell\ell\ell$
W [±] W [±] qq	4.60 ± 0.68	6.03 ± 0.85	_
WZ, WW, ZZ	5.47 ± 2.10	8.83 ± 3.25	1.19 ± 0.14
Rare SM bkg.	1.40 ± 0.68	2.57 ± 1.23	0.11 ± 0.03
$t\bar{t}\gamma^*$	0.50 ± 0.20	1.04 ± 0.42	_
$t\bar{t}\gamma$	0.09 ± 0.03	2.02 ± 0.60	_
tīZ	2.23 ± 0.41	2.87 ± 0.50	2.21 ± 0.36
$t\bar{t}W^{\pm}$	10.18 ± 2.24	14.85 ± 3.32	3.03 ± 0.51
tīH	2.26 ± 0.34	3.24 ± 0.47	1.52 ± 0.18
Charge Mis-ID	_	6.96 ± 1.76	_
Non-Prompt	33.34 ± 8.34	63.74 ± 12.46	31.44 ± 6.52
Total Background	$\textbf{60.07} \pm \textbf{8.95}$	112.13 ± 13.53	39.50 ± 6.55
$tH(\tau\tau)W$	0.10 ± 0.12	0.13 ± 0.14	0.12 ± 0.12
tH(WW)W	0.28 ± 0.29	0.47 ± 0.48	0.35 ± 0.35
$tH(\tau\tau)q$	0.59 ± 0.61	0.90 ± 0.91	0.56 ± 0.58
tH(WW)q	2.55 ± 2.62	3.73 ± 3.84	1.73 ± 1.80
Total Signal	$\textbf{3.53} \pm \textbf{2.71}$	$\textbf{5.22} \pm \textbf{3.98}$	$\textbf{2.76} \pm \textbf{1.93}$
Data	66	117	42

 most important systematics: fake rate normalisation unc. • 3 variable categories: forward activity, jet and bjet multeplicity, lepton kinematic and charge

CMS Preliminary

19.7 fb⁻¹ (8 TeV)

Source of uncertainty	Туре	Exclusive source (%)	Removal (%)
Luminosity	rate	< 1	< 1
Pileup	rate	< 1	< 1
Lepton trigger efficiency	rate	< 1	< 1
Lepton selection efficiencies	rate	< 1	< 1
Electron energy scale	shape	< 1	< 1
Jet energy corrections	shape	< 1	< 1
b-tagging efficiencies	shape	< 1	< 1
Flavour Scheme	rate	2	1
Higgs branching fractions	rate	< 1	< 1
Renormalization/factorization scale	rate	< 1	< 1
Parton density functions (pdf)	rate	< 1	< 1
Irreducible background normalization	rate	< 1	< 1
μ fake-rate normalization (SS)	rate	26	19
e fake-rate normalization (SS)	rate	12	5
μ fake-rate leptons shape (SS)	shape	< 1	1
e fake-rate leptons shape (SS)	shape	< 1	2
Non-prompt closure test (3ℓ)	rate	3	3
QCD control region variation for fake-rate (3ℓ)	shape	1	< 1
Fake-rate variation within stat. uncert. (3 ℓ)	shape	1	< 1
Charge misidentification (SS)	rate	< 1	< 1
Stat. uncert. for non-prompt leptons (3ℓ)	shape	2	3
Stat. uncert. for non-prompt leptons (SS)	shape	4	3

tH(bb): Yields and Systematics

	Process	Muon channel	Electron channel
	tī	1058 ± 5	$718{\pm}4$
)	Single top	39 ± 3	27±3
5 5 5	Electroweak	17^{+7}_{-5}	11±7
- \	ttH	12.87 ± 0.17	$9.35 {\pm} 0.15$
2	Total background	1128 ± 9	767 ± 10
)	$tHq, y_t = -1$	$7.54{\pm}0.03$	$5.15 {\pm} 0.02$
	S/B ratio	0.7%	0.7%
_			
-	Process	Muon channel	Electron channel
-	tī	$29.1 {\pm} 0.8$	19.8±0.7
	Single top	$1.1^{+0.8}_{-0.6}$	$1.2{\pm}1.0$
	Electroweak	4^{+6}_{-4}	5^{+6}_{-4}
	tīH	1.72 ± 0.06	1.43 ± 0.05
-	Total background	37^{+6}_{-4}	29^{+7}_{-4}
-	tHq, $y_t = -1$	$0.835 {\pm} 0.010$	$0.580 {\pm} 0.009$
-	tHq, $y_t = -1$ S/B ratio	0.835 ± 0.010 2.3%	0.580 ± 0.009 2.0%

cross section uncertainties

Process	pdf		QCD Scale				
1100055	88	qq	98	tŦ	V	VV	tīH
tHq			2%				
tĪH	9%						12.5%
$t\bar{t}$	2.6%			3%			
Single top			4.6%	2%			
W+jets		4.8%			1.3%		
Z+jets		4.2%			1.2%		
Dibosons						3.5%	

• Multivariate analyses

 discriminating variables depends on the hypothesis (signal or ttbar) are based on f b-jets and lepton c charge, light or b jets and top kinematics, charge of t decay product

most important systematics: btag and luminosity, theoretical uncertainties

Source	Turno	impact as exclusive	improvement of final limit	
Source	Туре	source on final limit [%]	after removal [%]	
JES	shape	17	3	
JER	shape	< 1	< 1	
BTag light flavor	shape	13	< 1	
BTag heavy flavor	shape	17	< 1	
Pile up	normalization	< 1	< 1	
Unclustered energy	shape	3	1	
Lepton efficiency	normalization	5	< 1	
Luminosity	normalization	10	< 1	
Cross section (PDF)	normalization	8	< 1	
Cross section (Scale)	normalization	9	< 1	
MC Bin-by-Bin unc.	shape	< 1	< 1	
Q^2 scale ($tHq + t\bar{t}$)	shape	20	4	
Matching	shape	2	2	
Top p_T reweighting	shape	19	2	
$t\bar{t}$ HF rates (b)	normalization	13	< 1	
$t\bar{t}$ HF rates ($b\bar{b}$)	normalization	15	< 1	
$t\bar{t}$ HF rates ($c / c\bar{c}$)	normalization	13	1	

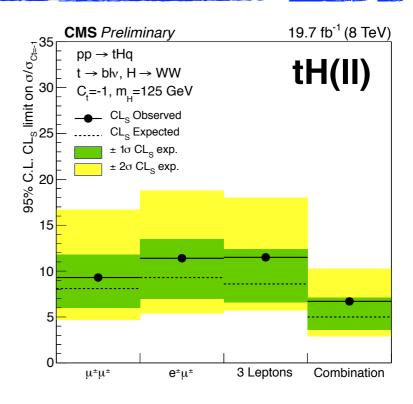
tH(γγ): Yields and Systematics

 cut and cout analysis: non resonant background shapes extracted from control regions, resonant background from MC

Process	Yield
$tHq (C_t = -1)$	0.67
tīH	$0.03 + 0.05^{\dagger}$
VH	$0.01 + 0.01^{+}$
other H	0

	tHq	tīH	VH	Continuous BG
Luminosity	$\pm 2.6\%$	$\pm 2.6\%$	±2.6%	-
PDF	+3.1/-2.5 %	$\pm 8\%$	$\pm 11\%$	-
QCD Scale	+4.8/-4.3 %	+11/-14 %	±2.3%	-
Signal Model	$\pm 5.5\%$	-	-	-
Photon Energy Resolution	+4/-2 %	+4/-2 %	+4/-2 %	-
Photon Energy Scale	+1/-4 %	+1/-4 %	+1/-4 %	-
Photon ID Efficiency	$\pm 2\%$	±2%	±2%	-
Vertex Efficiency	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	-
HLT	< 0.1%	< 0.1%	< 0.1%	-
JEC	$\pm 1.5\%$	+3/-5 %	$\pm 8\%$	-
JER	$\pm 0.5\%$	±3%	+8/-0%	-
<i>b</i> -tagging	±2%	$\pm 1.5\%$	$\pm 0.1\%$	-
PU ID	±2%	$\pm 0.5\%$	±2%	-
Lepton Reconstruction	$\pm 1\%$	$\pm 1\%$	±1%	-
BG shape	-	-	-	33%

Limits


tH(II):

٠

•

•

Channel	Observed	Expected	68% prob. band	95% prob. band
SS µµ	9.3	8.1	[6.0, 11.8]	[4.7, 16.7]
SS eµ	11.4	9.3	[7.0, 13.5]	[5.4, 18.8]
3ℓ	11.5	8.6	[6.6, 12.4]	[5.7, 18.0]
combined	6.7	5.0	[3.6, 7.1]	[2.9, 10.3]

Working on the

combination of the

three channels

tH(bb):

• 1.1 σ upward deviation

	Expected	Observed
MC-driven	$5.14\substack{+2.14 \\ -1.44}$	7.57
Data-driven cross-check	$6.24\substack{+2.26\\-1.71}$	6.95

tH(γγ):

- no events observed
- both expected and observed limits $\sigma(tH) < 4.1 \sigma_{Ct=-1}(tH)$

Summary

- CMS performed searches for LFV Higgs decays and indirectly FCNC
 - interesting results
 - LFV: $H \rightarrow e\tau$, $H \rightarrow e\mu$ results coming soon
 - FCNC: combination coming soon
 - Run 2:
 - LFV Higgs decay in 3 channels
 - tH(bb), tH(II)

Non-prompt analyses