How MSSM Higgs BRs are Calculated for the LHCHXSWG

Sven Heinemeyer, IFCA (CSIC, Santander)

Fermilab, 05/2015

BR co-convenors:

Ansgar Denner, Alexander Mück, Ivica Puljak, Daniela Rebuzzi

Main idea:

Use best code for individual decay widths

Main idea:

Use best code for individual decay widths

Codes used:

- FeynHiggs
- FeynHiggs/Prophecy4f
- Hdecay

Main idea:

Use best code for individual decay widths

Codes used:

- FeynHiggs
- FeynHiggs/Prophecy4f
- Hdecay

Tool for combination:

the "Script"

Author: Daniela Rebuzzi (with some help from S.H.)

- 1. Input parameters to FeynHiggs (native format or SLHA)
- FeynHiggs ⇒ Higgs masses, couplings, decay widths/BRs
 Output via SLHA file (total width and BRs)
- 3. SLHA file is stored and fed to HDECAY
- 4. HDECAY ⇒ decay widthsOutput via SLHA file (total width and BRs)
- 5. "Script" reads both SLHA files, extracts total and branching ratios⇒ calculation of partial widths
- 6. "Script" calculates total width:

$$\begin{split} \Gamma_{\phi} &= \Gamma_{\phi \to \tau\tau}^{\text{FH}} + \Gamma_{\phi \to \mu\mu}^{\text{FH}} + \Gamma_{\phi \to W^{(*)}W^{(*)}}^{\text{FH/P4f}} + \Gamma_{\phi \to Z^{(*)}Z^{(*)}}^{\text{FH/P4f}} \\ &+ \Gamma_{\phi \to b\bar{b}}^{\text{HD}} + \Gamma_{\phi \to t\bar{t}}^{\text{HD}} + \Gamma_{\phi \to c\bar{c}}^{\text{HD}} + \Gamma_{\phi \to gg}^{\text{HD}} + \Gamma_{\phi \to \gamma\gamma}^{\text{HD}} + \Gamma_{\phi \to Z\gamma}^{\text{HD}} \end{split}$$

7. "Script" calculates BRs

- 1. Input parameters to FeynHiggs (native format or SLHA)
- FeynHiggs ⇒ Higgs masses, couplings, decay widths/BRs
 Output via SLHA file (total width and BRs)
- 3. SLHA file is stored and fed to HDECAY
- 4. HDECAY ⇒ decay widthsOutput via SLHA file (total width and BRs)
- 5. "Script" reads both SLHA files, extracts total and branching ratios⇒ calculation of partial widths
- 6. "Script" calculates total width:

$$\Gamma_{H^{\pm}} = \Gamma^{\mathsf{HD}}(H^{\pm} \to tb) + \Gamma^{\mathsf{FH}}(H^{\pm} \to \tau\nu_{\tau}) + \Gamma^{\mathsf{FH}}(H^{\pm} \to \mu\nu_{\mu})$$
$$+ \Gamma^{\mathsf{HD}}(H^{\pm} \to cs) + \Gamma^{\cdots}(H^{\pm} \to AW) + \Gamma^{\cdots}(H^{\pm} \to HW) + \dots$$

7. "Script" calculates BRs

⇒ kinks from chargino/neutralino thresholds

Decays to SUSY particles:

- Taken into account in the total width
- Not yet individual output
- can (easily?) be changed

Results exist for:

"classic benchmarks"

- $-\ m_h^{\rm max-up}$
- $m_h^{mod+} \\ m_h^{mod-}$
- light-stop
- light-stau
- tau-phobic
- low- M_H

New results wanted?

 \rightarrow send an email to Daniela and S.H. :-)

New additions:

- $H \rightarrow hh$ and $A \rightarrow hZ$ included \rightarrow request by ATLAS/CMS
- Extended range of $M_A = 5...90$ GeV included \rightarrow request for light charged Higgs searches Currently running: $M_A = 1000...2000$ GeV
- BR($t \to H^{\pm}b$) included (in a preliminary way!) \to request for light charged Higgs searches To-do: agree on code, redo runs!
- Extended range of $\mu=\pm 1000, \pm 500, \pm 200$ GeV (wip) \rightarrow request by the $\phi \rightarrow b\bar{b}$ group
- proposal for a new benchmark scenario: "low-tb-high" \rightarrow request by ATLAS/CMS to have a scenario valid at low tan β
 - to get large $\mathsf{BR}(H o hh)$, $\mathsf{BR}(A o Ah)$
 - ⇒ to be scrutinized/approved/rejected by MSSM subgroup . . .
 - ⇒ new parameter spaces, new problems, ... but we got it right!

New, interesting decays/scenarios?

From my email with Stefania :-)

Stefania:

For the specific case of the MSSM, we are thinking to decays of the type $h \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \tilde{G}$ (with \tilde{G} the gravitino and $\tilde{\chi}_1^0$ mainly bino).

Sven:

I understand that $\mathrm{BR}(\tilde{\chi}_1^0 \to \gamma \tilde{G}) = 1$ is assumed, but that the parameters $m_{\tilde{\chi}_1^0}$, $m_{3/2}$ and the neutralino mixing matrix are still relevant. The longer the life time the better? Probably up to a certain limit that gives you displaced photons (with a decay length ctau). What are your preferred values?

 ${\rm BR}(h\tilde{\chi}_1^0\tilde{\chi}_1^0)$ is in principle evaluated in our machinery. So far it did not play a role, because in the benchmark scenarios so far $m_{\tilde{\chi}_1^0} > M_h/2$.

Sven: (cont.)

So we need a scenario with $M_1 \neq M_2$ at the GUT scale, equivalent to $M_1 \neq M_2/2$ at the EW scale. The easiest would be to treat M_1 and M_2 independent paraemters.

One could start with a known benchmark scenario but just keep M_1 as a free parameter, then scan M_A , $\tan \beta$ and M_1 , evaluate $\text{BR}(h\tilde{\chi}_1^0\tilde{\chi}_1^0)$ and ctau to find interesting regions.

Thoughts?