
Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?

The ROOT framework - Lecture and Tutorial -

Andrea Knue HASCO Summer School Goettingen, July 2015

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Not tha	at simple!				

Short Brainstorming:

- What information do we have?
- 2 What information are we interested in?
- 3 How do we get there?

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
What c	lo you need for a	data analysis?			

A lot of important steps before extracting the final quantity:

- experiment \rightarrow data taking!
- detector calibration
- event selection
- but also: produce simulation (Monte Carlo generators) to compare with!
- run all steps over data and MC
- write out ntuple for actual analysis

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
What to	ools do we need	(basic view)			

- plot histograms and measured values
- fit distributions
- add histograms
- stack histograms and compare to data
- make ratio plots, compare shapes
- have proper labelling
- extract values from data
 - \rightarrow all this (and more) can be done with ROOT

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Disclaimer					

- ${\small {\circ}}\ info from https://root.cern.ch/$
- took a bit of orientation also from last year Link
- ${\scriptstyle \bullet} \,$ some examples shown today: from ROOTSYS/tutorials/

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Introdu	ction: What is F	ROOT?			

- framework for data analysis (started 1994)
 - \hookrightarrow before: PAW, Fortran based
 - \hookrightarrow now: object oriented, based on C++
- developed for High Energy Physics
- new features implemented constantly
- find latest version for download here

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Introduc	ction: What is F				

- simple data analysis: read data, fill histogram, handle four-vectors
- make fits, write out results
- make fancy plots for your thesis, paper etc
- includes also more advanced statistical methods:
 - $\hookrightarrow \mathsf{Nuisance} \text{ parameter fits: RooFit}$
 - $\hookrightarrow \mathsf{Unfolding:}\ \mathsf{RooUnfold}$
 - $\hookrightarrow \mathsf{Multivariate} \ \mathsf{Analyses:} \ \mathsf{TMVA}$

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Why ol	bject-oriented pr	ogramming la	nguage?		

- classes allow modular structure, decreased level of complexity
- allows classes to inherit from other classes
 - $\hookrightarrow \mathsf{makes} \ \mathsf{development} \ \mathsf{much} \ \mathsf{easier}$
 - \hookrightarrow object can easily be extended
- allows abstraction and polymorphism

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
How to	get ROOT?				

a) If you are working at CERN (lxplus)

ssh -Y username@lxplus.cern.ch

 $source\ /afs/cern.ch/sw/lcg/contrib/gcc/4.8/x86_64-slc6/setup.sh$

 $\texttt{source /afs/cern.ch/sw/lcg/app/releases/ROOT/6.02.05/x86_64-slc6-gcc48-opt/root/bin/thisroot.sh}$

b) on your laptop

- to install locally Download here!
- very easy to install on Linux
- works on Windows or MacOS too Link to versions

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
First steps					

If root is properly installed on your computer, just type: root

 \rightarrow if you want to avoid the logo to open, just type root -l instead of root .

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Random	generators				

- → computers: not truly random but **pseudo random**
- \rightarrow good enough for a lot of applications

Where do we need them?

- emulate detector conditions: smear simulated data (Monte Carlo) to model resolution of detector
- apply object calibrations (electron, muon jets) to match MC to data

What do we need from them?

- ${\scriptstyle \bullet} \,$ long period ${\rightarrow}$ should not repeat themselves too quickly
- ${\scriptstyle \bullet}\,$ fast algorithm: \rightarrow have to do this quite often!

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Random	n generators: ho	w random is i	random?		

ROOT comes with several random generators:

- TRandom: periodicity: 10⁹, 34 ns/call (no NOT use!)
- 2 TRandom1: periodicity: 10¹⁴, 242 ns/call
- 3 TRandom2: periodicity: 10²⁶, 37 ns/call
- TRandom3: default, use only this one!
 - $\hookrightarrow \mathsf{Mersenne-Twister}\ generator$
 - \hookrightarrow very long periodicity: 10^{600}
 - \hookrightarrow resonably fast: 42 ns/call

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Random	n generators II				

Choice of seed

- need to choose starting point (seed)
- choose specific value (for example 1234)

 \hookrightarrow then the simulation can be reproduced (code debugging)

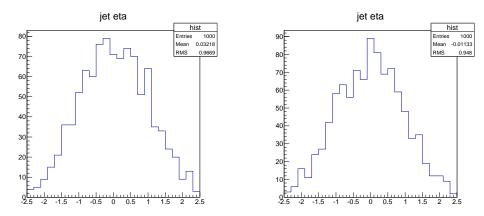
- choose seed=0:
 - \hookrightarrow take system time of the computer,

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Example	es for functions	in TRandom3	3		

Uniform(x1)

 \rightarrow calls random number uniformly distributed between 0 and x1

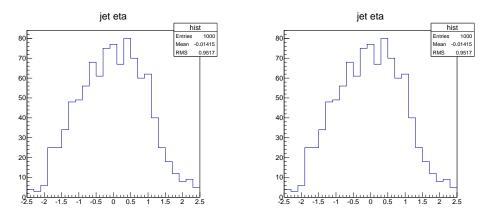
Gauss(mean, sigma)


 \rightarrow calls random number in gaussian distribution around mean with width sigma

• exp(tau)

 \rightarrow calls random number in exp distribution with exp(-t/tau)

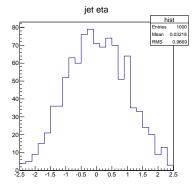
• also have landau, poisson, binomial...


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Two dis	stributions: gaus	sians with see	ed 0		

 \rightarrow run same code twice with seed 0: different distributions

- The ROOT framework -

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Two dis	stributions: gaus	sians with se	ed 1234		

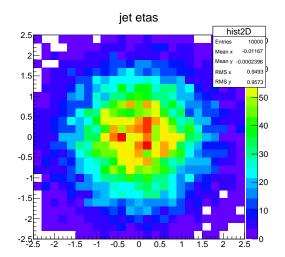

 \rightarrow run same code twice with seed 1234: same distributions !

- The ROOT framework -

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
How do	we get this sin	ple plot?			

int TestCode(){

```
// define canvas for output plot
TCanvas *c1 = new TCanvas("c1", "The FillRandom example", 200, 10, 700, 700);
// define 1D histogram with 25 bins and range -2.5 to 2.5
         *fHisto = new TH1D("hist", "jet eta", 25, -2.5, 2.5);
// initialize random generator
TRandom3 *fRand = new TRandom3();
// seed seed: take system time
fRand -> SetSeed(0);
int stats1 = 1000:
// fill histogram with 1000 random values
for(int 1 = 0; 1 < stats1; ++1){</pre>
 double value = fRand -> Gaus(0.0, 1.0);
  fHisto -> Fill(value);
// draw histogram to canvas
fHisto -> Draw();
// print canvas
c1
       -> Print();
```

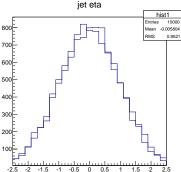


→ write this into file TestCode.C

→ now call in command line: root TestCode.C

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Exampl	le code for 2D plo	ot			

```
int TestCode2D(){
 // define canvas for output plot
 TCanvas *c1 = new TCanvas("c1","The FillRandom example", 200, 10, 700, 700);
 // define 2D histogram with 25 bins and range -2.5 to 2.5
  TH2D
          *fHisto1 = new TH2D("hist2D", "jet etas", 25, -2.5, 2.5, 25, -2.5, 2.5);
 // initialize random generator
 TRandom3 *fRand = new TRandom3():
 // seed seed to system time: 0
 fRand -> SetSeed(0);
 int stats1 = 10000;
 // fill histogram with 10000 random values
 for(int i = 0; i < stats1; ++i){</pre>
   double value1 = fRand -> Gaus(0.0, 1.0):
   double value2 = fRand -> Gaus(0.0, 1.0);
   fHisto1 -> Fill(value1, value2);
 }
 // draw 2D plot with colour scheme
 fHisto1 -> Draw("COLZ");
 // print canvas
  c1 -> Print();
 c1 -> Print("test2D.root"); // write plot to root file for later usage
```

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Plot out	put: no correla	tion			



Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?

Now put 2 Histograms in one plot

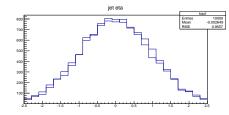
int TestCode(){

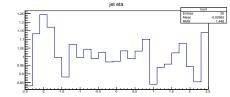
```
// define canvas for output plot
TCanvas *c1
                   = new TCanvas("c1". "The FillRandom example", 200, 10, 700, 700);
// define 1D histogram with 25 bins and range -2.5 to 2.5
                                                                                             800
         *fHisto1 = new TH1D("hist1", "jet eta", 25, -2.5, 2.5);
*fHisto2 = new TH1D("hist2", "jet eta", 25, -2.5, 2.5);
                                                                                             700
// initialize random generator
TRandom3 *fRand = new TRandom3();
                                                                                             600
// seed seed to system time: 0
fRand -> SetSeed(0):
                                                                                             500
int stats1 = 10000;
                                                                                             400
// fill histograms with 10000 random values
for(int i = 0: i < stats1: ++i){</pre>
                                                                                             300
  double value1 = fRand -> Gaus(0.0, 1.0);
  double value2 = fRand -> Gaus(0.0, 1.0);
                                                                                             200
  fHisto1 -> Fill(value1):
  fHisto2 -> Fill(value2);
                                                                                             100
// draw both histogram to canvas
fHisto1 -> Draw():
fHisto2 -> Draw("SAME"); // print both distributions in one canvas
// print canvas
c1
       -> Print();
```


 \rightarrow have to specify Draw("SAME") when drawing the second histogram

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Now wa	ant to compare 1	the two shape	s: h1 \rightarrow Divid	e(h2)	

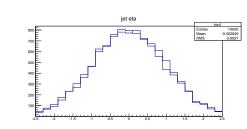
int TestCode(){

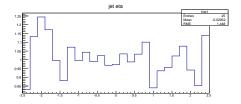

```
// define canvas for output plot
TCanvas *c1
               = new TCanvas("c1", "The FillRandom example", 200, 10, 700, 700)
pad1 = new TPad("pad1", "main plot", 0.05.0.50.0.95.0.95.21);
pad2 = new TPad("pad2", "ratio plot", 0.05,0.05,0.95,0.45,21);
pad1->SetFillColor(0):
pad2->SetFillColor(0);
pad1->Draw():
pad2->Draw();
pad1->cd(); // go not into first pad and draw the histograms
// define 1D histogram with 25 bins and range -2.5 to 2.5
         *fHisto1 = new TH1D("hist1", "jet eta", 25, -2.5, 2.5);
TH1D
         *fHisto2 = new TH1D("hist2", "jet eta", 25, -2.5, 2.5);
// initialize random generator
TRandom3 *fRand = new TRandom3():
fRand -> SetSeed(0): // seed seed to system time: 0
int stats1 = 10000;
// fill histograms with 10000 random values
for(int i = 0; i < stats1; ++i){</pre>
  double value1 = fRand -> Gaus(0.0, 1.0);
  double value2 = fRand -> Gaus(0.0, 1.0);
  fHisto1 -> Fill(value1):
  fHisto2 -> Fill(value2):
// draw both histogram to canvas
fHisto1 -> Draw():
```


fHisto1 -> Draw(); fHisto2 -> Draw("SAME"); // print both distributions in one canvas

pad2->cd(); // go now to second pad and get the ratio plot

THID *fRatio = (THID*) fHisto1 -> Clone(); // clone now first histo fRatio -> Divide(fHisto2); // build the ratio of the two histograms! fRatio -> Draw();


// print canvas
c1 -> Print();

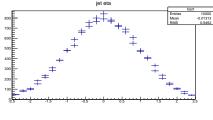


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Look at	: our simple plot	: good enoug	h?		

→ No! See at least 8 things that are unclear/missing!

- The ROOT framework -

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
How to	make now a go	od plot?			

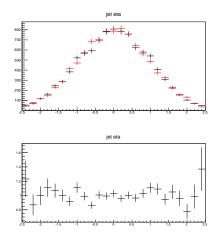

- has to be informative
- not too crowded, but complete!
- good, unambiguous colour code
- Iabels, titles, legend: good text size!
- good axis labels and titles: do not forget units!
- which analysis channel? how many jets/btags?
- which experiment, which luminosity?

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
N 1					

Now want to show statistical uncertainty

int TestCode(){

```
// define canvas for output plot
TCanvas *c1
                  = new TCanvas("c1","The FillRandom example", 200, 10, 700, 700);
pad1 = new TPad("pad1", "main plot", 0.05,0.50,0.95,0.95,21);
pad2 = new TPad("pad2", "ratio plot", 0.05.0.05.0.95.0.45.21);
pad1->SetFillColor(0):
pad2->SetFillColor(0):
pad1->Draw();
pad2->Draw();
                                                                               800
pad1->cd(); // go not into first pad and draw the histograms
                                                                               700
// define 1D histogram with 25 bins and range -2.5 to 2.5
                                                                               600
         *fHisto1 = new TH1D("hist1", "jet eta", 25, -2.5, 2.5);
                                                                               500
TH1D
         *fHisto2 = new TH1D("hist2", "jet eta", 25, -2.5, 2.5);
                                                                               400
// we want stat. uncertainties to be shown!
                                                                               300
fHisto1 -> Sumw2():
                                                                               200
fHisto2 -> Sumw2():
```

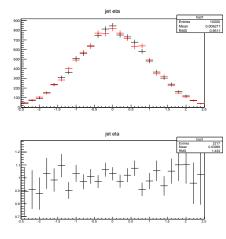



Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Now war	nt to remove st	atistics box			

```
gStyle->SetOptStat(0); // remove the stats box
```

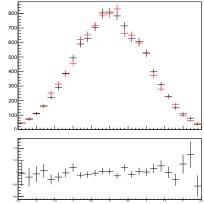
```
THID *fRatio = (THiD*) fHisto1 -> Clone(); // clone now first histo
fRatio -> Divide(fHisto2); // build the ratio of the two histograms!
fRatio -> Draw();
```

```
// print canvas
c1 -> Print();
```



Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
NI .					

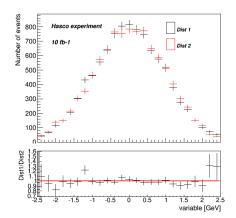
Now want proper colour code

// use different line colors
fHisto1 -> SetLineColor(kBlack);


fHisto2 -> SetLineColor(kRed);

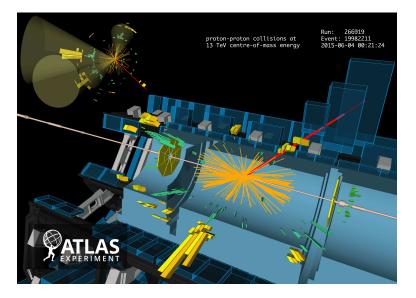
// draw both histogram to canvas
fHisto1 -> Draw();
fHisto2 -> Draw("SAME"); // print both distributions in

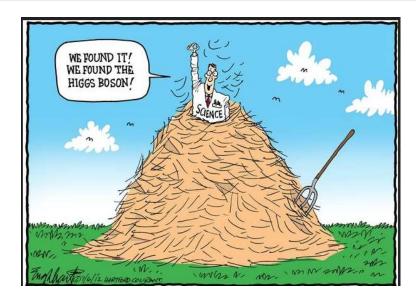
Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Now wa	nt better ratio	plot			

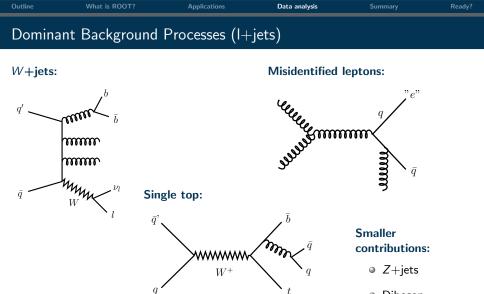

```
// define canvas for output plot
TCanvas *c1 = new TCanvas(*c1,"The FillRandom example", 200, 10, 700, 700);
pad1 = new TPad("pad1", "main plot", 0.05,0.30,0.95,0.95,21); // make upper hist bigger
pad2 = new TPad("pad2", "ratio plot", 0.05,0.05,0.95,0.36,21); // make lower hist smaller
pad1->5etFillColor(0);
pad1->Doraw();
pad1->Doraw();
pad1->Core(); // go not into first pad and draw the histograms
```


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Add mor	e information t	o plot			

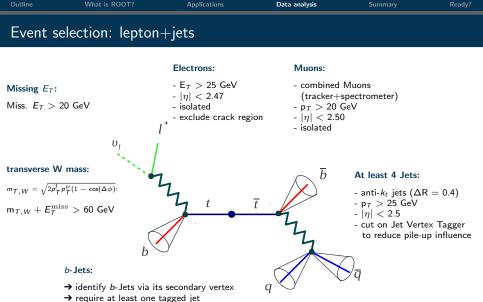
fixed now:


- add axis title
- adjust label and title sizes
- add line at y = 1 to ratio plot
- add Legend
- add label for experiment and sample stats
- → all of this will be in tomorrows tutorial

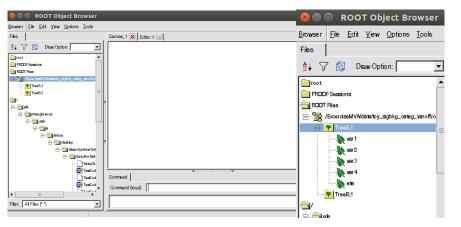

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
What is	s a flat ntuple?				


- store all info we have in ROOT Tree
- have a **branch** for each variable
- a branch can contain an integer, float, double, vector of floats, vector of vector...
- "flat" ntuple: easily browsable
- simplest object if you want to do your final analysis
- contains object kinematics (four vectors, scale factors, event weights...)

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
A pretty	v HEP event				


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
but i	t does not alwa	ys look that c	lean!		

Diboson


[→] Need a lot of variables in a handy format

→ use MV2 @ 77 % WP

34/55

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Open tree	e in browser				

- → do: root -l FileName.root
- → and then: new TBrowser

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
l was giv	ven a large RO(OT Tree to ar	nalyse, what no	w?	

Make structure to read it

→ magical command: MakeClass

Example:

- filename: example.root, tree name: TreeS
- type: root example.root
- then type: TreeS→MakeClass("TestTree")
- you get: TestTree.h and TestTree.C

root [1] TBrowser b
root [2] TreeS->MakeClass('TestTree')
Info in <TTreePlayer::MakeClass>: Files: TestTree.h and TestTree.C generated from TTree: TreeS
(Int_t)
root [3]

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
.					i i i i i i i i i i i i i i i i i i i

#ifndef TestTree h #define TestTree h #include <TROOT.h> #include <TChain.h> #include <TFile.h> // Header file for the classes stored in the TTree if any. // Fixed size dimensions of array or collections stored in the TTree if any. class TestTree { public : TTCRE *fChain: //!pointer to the analyzed TTree or TChain Int t fCurrent: //icurrent Tree number in a TChain // Declaration of leaf types Float t Float t Float t Float t Float_t // List of branches TBranch "b var1; //! TBranch "b var2 //! *b_var3; //! TBranch TBranch *b var4: //! TBranch *b eta: //! TestTree(TTree *tree=0): virtual ~TestTree(); virtual Int t Cut(Long64 t entry): virtual Int_t GetEntry(Long64_t entry); virtual Long64 t LoadTree(Long64 t entry): virtual void Init(TTree *tree);

virtual void Loop(); virtual Bool_t Notify(); virtual void Show(Long

File Edit Options Buffers Tools C Help

// from TTree TreeS/TreeS

// found on file: ../ExcerciseMVA/data/tov sigbkg categ varoff.root

Output header file: lest lree.h

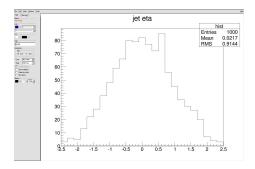
Show(Long64_t entry = -1); - The ROOT framework -

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Output	macro: TestTre	e.C			

```
File Edit Options Buffers Tools C++ Help
define TestTree cxx
#include "TestTree.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
void TestTree::Loop()
    In a ROOT session, you can do:
11
       Root > .L TestTree.C
        Root > TestTree t
       Root > t.GetEntry(12); // Fill t data members with entry number 12
       Root > t.Show(); // Show values of entry 12
                            // Read and show values of entry 16
       Root > t.Show(16);
       Root > t.Loop();
                            // Loop on all entries
     This is the loop skeleton where:
11
     ientry is the global entry number in the chain
     ientry is the entry number in the current Tree
11 Note that the argument to GetEntry must be:
     jentry for TChain::GetEntry
     lentry for TTree::GetEntry and TBranch::GetEntry
         To read only selected branches, Insert statements like:
// METHOD1:
      fChain->SetBranchStatus("*".0); // disable all branches
     fChain->SetBranchStatus("branchname".1); // activate branchname
// METHOD2: replace line
                                    //read all branches
11
     fChain->GetEntry(jentry);
//by b branchname->GetEntry(ientry): //read only this branch
  if (fchain == 0) return:
  Long64 t nentries = fChain->GetEntriesFast():
  Long64_t nbytes = 0, nb = 0;
   for (Long64_t jentry=0; jentry<nentries; jentry++) {</pre>
     Long64_t ientry = LoadTree(jentry);
      if (ientry < 0) break;
     nb = fChain->GetEntry(jentry); nbytes += nb;
     // if (Cut(ientry) < 0) continue;</pre>
```

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Root M	acro vs compile	d code			

up to now:

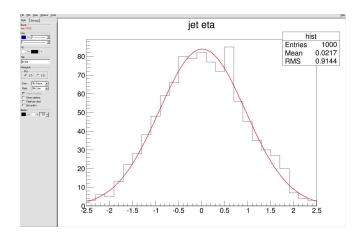

- only showed how to run a root macro with root MacroName.C
- fine for small tests, very slow for larger statistics

How to compile a root macro (using CINT, ACLIC)

- open root in command line, then do: .L TestScript.C++
- have to make sure all neccessary non-root libraries (like iostream, string etc) are included
- but: better include the libraries in a proper C++ class and use a Makefile!

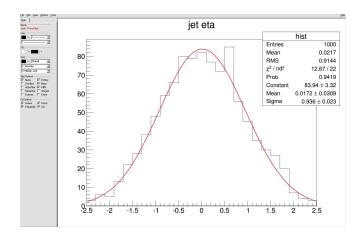
Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
The Ro	ot browser/edite	or			

- want to work with a histogram that has been stored in a .root file
- open it with root: root HistoFile.root
- then click on histogram in the file


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
The Ro	ot browser/edit	or			

😣 🖨 🛛 Fit Panel		
Data Set: TH1D::hist		•
Fit Function		
Type: Predef-1D 💌 gaus		-
Operation		
Nop C Add Conv Conv		
gaus		
Selected:		
gaus	Set Par	ameters
· ·		
General Minimization		
Fit Settings		
Method		1
Chi-square 💌	User De	fined
🗖 Litearfit	Robust:	0.95
Fit Options		
Integral	🗌 Use range	
Eest errors	🗆 Improve fit	results
All weights = 1	Add to list	
Empty bins, weights=1	🗌 Use Gradie	ent
Draw Options		
SAME		
No drawing		
Do not store/draw	Advan	red.
Х -2.50 🚔 🖄		2.50 🗘
•		
Update Et	Beset	Glose
TH1D:hist LBMinuit MIGRAD	h:0	Pm:DEF

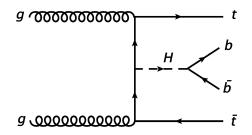
x		Contra Door	611 - T	the second have be		
		::SaveAs>: ROOT				
root	<pre>[1] FCN=12</pre>	.672 FROM MIGRAE	STATUS=COI	NVERGED	57 CALLS	58 TC
		EDM=3.65880	-11 STRATE	GY= 1 ER	ROR MATRIX ACC	URATE
EXT	PARAMETER			STEP	FIRST	
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1	Constant	8.39369e+01	3.32320e+00	4.84754e-03	2.82605e-06	i i
2	Mean	1.71986e-02	3.08937e-02	5.57613e-05	5.67416e-05	
3	Sigma	9.36009e-01	2.32333e-02	1.22025e-05	1.07896e-03	3


- open histogram in TBrowser
- ${\scriptstyle { \bullet } }$ click on: View ${ \rightarrow }$ Editor
- ${\scriptstyle { \bullet } }$ then: Tools ${ \rightarrow }$ FitPanel
- o choose fit function
- press "Fit" button
- get fit parameters in terminal

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
The Ro	ot browser/editc	or			

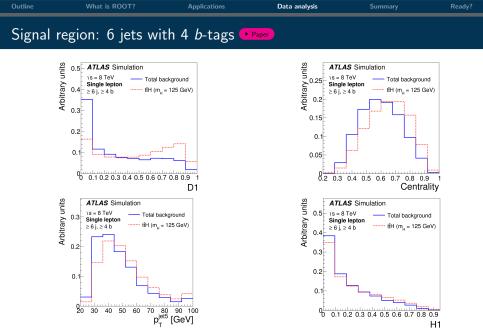
 \rightarrow Now one gets the function from the fit result on top of the histogram.

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
The Ro	ot browser/editc	or			

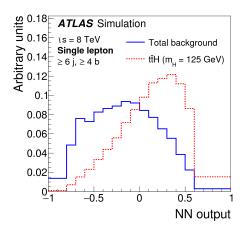


 $\boldsymbol{\rightarrow}$ can choose in panel on left side which results should be shown in stats box.

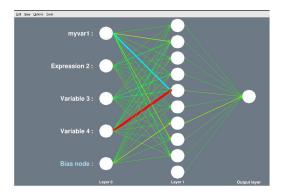
Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Run M	lultivariate Analysi	S			


- available in ROOT in TMVA package
- what is a multivariate analysis?
- want to distinguish signal from background, one variable not powerful enough
- not too many, but enough variables (balance between separation power and running time)
- check for overtraining
- start with example!

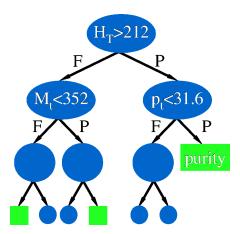
 \rightarrow but: if a gluon is radiated instead of a Higgs, the final state is identical!


 $\boldsymbol{\rightarrow}$ large irreducible background, need to find variables to distinguish the two processes

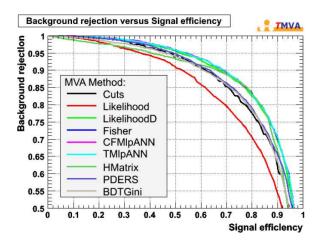
 \rightarrow some separation in each distribution: take all this info and make new variable!

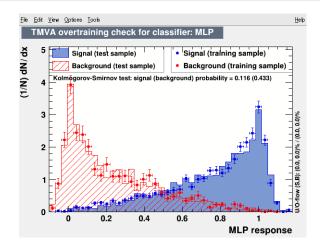


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Final ana	lysis discrimina	nt			


 \rightarrow use information of 10 different variables: much better separation

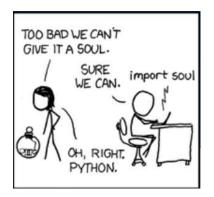
Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Neural	networks				


- → input layer: as many nodes as input variables
- → next layer: combine variables, NN can "learn"



 \rightarrow but many more methods can be tested, lots implemented in TMVA

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Compar	e different meth	nods directly (Plot from here		


Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Check	for overtraining!				

- \rightarrow overtraining: NN takes statistical fluctuations into account
- $\boldsymbol{\rightarrow}$ use only half of sample for training, then use other half to test

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Pyroot	use ROOT in r	ovthon script			

PJ

- ightarrow this will be covered in one of the excercises tomorrow
- → more documentation here

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Summary					

- need to store a lot of information
- info has to be easily accessible/modifyable
- need to be able to make pretty plots
- this and much more provided by ROOT
- Warning: has some annoying functionalities that you might experience soon!
- (not fortran, sorry PAW fans!)

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Ready fo	or some actual	work?			

\rightarrow See you for the tutorial tomorrow!

- The ROOT framework -

Outline	What is ROOT?	Applications	Data analysis	Summary	Ready?
Exercises					

- (1) Find Higgs boson in $gg \rightarrow H \rightarrow \gamma \gamma$ channel and make money plot.
- 2 Read trees and make correlation plots with pyROOT.
- **③** Train different MVA and compare the performance.

