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What are “Unparticles”?

An effective description of Conformal Field Theories.

Scale invariant theory:
R AP

O A e ds
O(xp) = x*O(p)
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Messengers

Trivial example: a massless particle d=1!
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What are “Unparticles”?

An effective description of Conformal Field Theories.

Scale invariant theory:
R AP

O A e ds
O(xp) = x*O(p)
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The conformal sector couples to the Standard Model via:
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H.Georgi proposed... unparticles:

Georgi, hep-ph/0703260 & 0704.2457

@ Consider a massless particle (d=1):
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H.Georgi proposed... unparticles:

Georgi, hep-ph/0703260 & 0704.2457

@ Consider a massless particle (d=1):
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Scales like:



H.Georgi proposed... unparticles:

Georgi, hep-ph/0703260 & 0704.2457

@ Consider an operator () with scaling
dimension d > 1

Ag(p,ds) = /d4ajem (01O
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H.Georgi proposed... unparticles:

Georgi, hep-ph/0703260 & 0704.2457

@ Consider an operator () with scaling
dimension d > 1

Ags(p,ds) = /d4aje7’px (01O
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Phase space:  d®(p,ds) = Aq, 0 (p°) 0 (p°) (p*)% 7

Phase space of d-particles: un-particles!



H.Georgi proposed... unparticles:
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@ Consider an operator () with scaling
dimension d > 1
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Phase space:  d®(p,d,) = Ag4, 0 (p°) 0 (p*) (p°)*

Normalization fixed, recover particle for d->l1.



H.Georgi proposed... unparticles:

Georgi, hep-ph/0703260 & 0704.2457

@ Consider an operator () with scaling
dimension d > 1

A (pd e / d*z eP*(0|O(2)O7(0)]0)
et O M“)%s dM
2 ) g G p? — M?2 + ie

R ey i .
W DS (—p2 — ie)Q—ds "
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The integral diverges for ds > 2

but the phase space is well behaved!



However, quite boring at the LHC:
signatures are

® Interactions with the SM via contact terms
(higher order)

C
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@ Missing ET (fransverse energy): non-integer
number of invisible particles

® Virtual effects: interference with SM
processes



Example 1:
top decay

top -> up + unparticle

Georgi, hep-ph/0703260



Example 2:
interference in e+e- -> U+H-

Total cross section ->

—5|C.4u|2

Figure 1: The fractional change in total cross-section for e"e~ — u*u~ versus /s for d;; = 1.1, 1.3,
1.5, 1.7 and 1.9 for non-zero ¢4y and ¢y = 0. The dash-length increases with dy,.

Georgi, 0704.2457

Forward-Backward
Asymmetry ->

Figure 5: The change in the front-back asymmetry for ete™ — p*u~ versus /s for dj; = 1.1, 1.3,
1.5, 1.7 and 1.9 for non-zero ¢4y and ¢y = 0. The dash-length increases with d;,.
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Colored Unparticles

Cacciapaglia, Marandella, Terning
0708.0005

@ Can unparticles carry SM charges? Pourquoi
pas?

@ Derive a non-local action from Georgis
propagator:
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@ Gauge it! (minimal gauging)

@ Vertices with arbitrary number of gauge
bosons, non frivial p-dependence...



One gluon:

igI's’ (p,q) = ig T (2p" + ¢") Fs(p, q) ,

Two gluons:
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@ Is the gauging we proposed unique?
Consistent?

® Can we calculate cross sections?

Naive answer using phase space:

o(qq — unparticles) = oo

Smells like IR divergencies in QCD
reg. by emission of real soft gluon.



@ Is the gauging we proposed unique?
Consistent?

® Can we calculate cross sections?

o(qq — unparticles) = (2 — d;) og(particles)

Negative for ds> 2222

The vertices also contribute to the Im part!
Non frivial cancellation between the two diagrams



IR threshold

@ To be consistent with low energy data, we
need an IR threshold:

Fox, Rajaraman, Shirman
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@ Is it consistent? Does the mass gap generate
confinement or light resonances, thus
destroying the unparfticles?




List of open issues:

Can the AdS/CFT correspondence help?



Why warping?

Randall, Sundrum...

2
ds = <E> (dz,dz" — dz°)

Bulk
2

uv
cutoff P
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® Conformal when ¢ — 0

@ AdS/CFT: it is dual to strongly coupled
conformal sector

® Continuum when IR brane is removed



Why warping?

Randall, Sundrum...

Bulk

2
ds = <E> (dz,dz" — dz°)
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uv
cutoff P

€

Goal: build a model of unparticles
in warped space!

Cacciapaglia, Marandella, Terning
0804.0424



Fermionic unparticles

A¢(p,dy)
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@ Left-handed operator (& with dimension dy
@ Propagator sick for df > 5/2

@ Recover particle limit for dy — 3/2



AdS/CFT for fermions

Contino Pomarol, 0802.2946
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® Consider a fermion with bulk mass ¢

x(p,2) = Az2 (caJC+% (p2) + Sad__1 (pz))

WD 2P = Az3 (c@JC_%(pz) — saJ_CJr%(pz))

@ « is defermined by boundary conditions in the IR,

A by the BCs in the UV: (0, €) = Xo
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@ Consider a fermion with bulk mass ¢
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AdS/CFT for fermions

Contino Pomarol, 0802.2946
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@ After integrating out the bulk, we are left with a
UV-brane action:
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Unparticle propagator with d; =2 + c




Unparticle propagafer with d; =2 + ¢

Local terms: dominate for ¢>1/2 ( df >5/2 )



Unparticle propagafer with d; =2 + ¢

Local terms: dominate for ¢>1/2 ( df >5/2 )

For a |.h. operator, ¢ -> -C



For df > 5/2 , the local terms cannot be
neglected:

@ They are the counter-terms that make the
unparticle propagator finite!

@ They do not contribute to the phase space.

@ They do contribute fo the propagator,
generating effective contact interactions.

@ The qq cross section is suppressed by the UV
cutoff for d¢y >5/2 (ds > 2)



Effective action:
for -1/2 < c < 1/2

s / R
holo (27T)4 XO (p2)1/2_c XO
@ source coupled to rh operator of dim 2+c

@ it is also action for a lh unparticle of
dimension 2-c (Legendre transform)

Sholo can be used as an
effective unparticle action

caveat: for large d (ds > 5/2,ds > 2),
UV-dependent local counterterms should be included



Gauge interactions
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® The flat zero mode is non-normalizable:

1 R Skl R IR
s e ] > OC

2 B e
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g4 runs to zero in the IR..

@ Can we stop the running? Dilaton function...



Gauge inferactions
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® The flat zero mode is normalizable:
i e L R 1

= s e
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g4 runs from the UV cutoff fo m...

@ Spectrum: continuum? Isolated pole(s)?



B2) cgtee? IR - 4°) o

@ p < m/2 : only the zero mode is present

@ p > m/2 : the exponentials become oscillatory
-> continuum!

The continuum only appears above the
IR threshold m/2



spectrum

1.0

zrr = 100/m zrr = 200/m




@ Gauge interactions of the zero mode can be
computed in AdS.

@ They do coincide with our proposal of
minimal-coupling of the effective action!



IR threshold:
soft breaking of conformal inv.
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@ An IR brane will generate KK resonances, confinement.

® However, we can break conformal invariance with a
bulk scalar VEV.

@ Take a scalar H with dimension du that couple with
the unparticle field: H¢oo



IR threshold:
soft breaking of conformal inv.
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If du= 2, the coupling scales like a kinetic term:
If (H) = p"z" .
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In the solutions: P = /(p? — u?)






Conclusions

@ Unparticles describe new signatures for
experiments

@ AdS provides a model of unparticles, with
gauge interactions and IR threshold

@ Many unparticle issues can be understood in
this language

@ Unparticles can provide new model-building
ideas in AdS: soft breaking of conformal
invariance, un-Higgs...




