# Some Comments on Theory/Experiment in Z cross-section

#### (Ronan McNulty)

A number of issues arose in the preceding work which have been discussed at some length with Robert, and might usefully be brought to this forum....

#### Z could be used to measure the luminosity

- 1. What is theoretical precision (from PDF)?
- 2. Can (PDF) precision be improved?
- 3. How should the error bands be interpreted?
- 4. Is the procedure that produces them consistent?

# What is theoretical precision on Z (from PDF)?

- NNLO calculation better than 1%
- Statement has been made many times that  $\sigma_Z$  is known to ~3-4%
- Statistical uncertainty on  $\sigma_{\rm Z}$  coming from PDFs (any model) is ~ 1% when constrained fit made to  $d\sigma/dy$
- Model dependence is much bigger.
- Given that  $\sigma_Z$  changes by 0/-4/2 % for MSTW/CTEQ/Alekhin, is my overall uncertainty
  - $\Delta$ ,  $\Delta/2$ ,  $2\Delta$  ? It makes a difference!

# Can PDF precision be improved?

- If we can move from 4% uncertainty to 1% it makes a huge difference to luminosity measurement.
- From quality of fit to  $d\sigma/dy$  it may be possible to distinguish Alekhin/CTEQ/MSTW.
- What are model differences giving  $\sigma_Z$  variations?
- Are these objective differences that can be resolved?
- Or are these just due to a different approach?

#### How should the error bands be interpreted?

- Error bands as measure of uncertainty on PDF hopefully allow me say: "In 90% of repeated fits to such global data, the true value would be within the band"
- With some added assumptions of a Gaussian like distribution, I can derive a 67% 1σ range.
- Constrained fits to find  $d\sigma/dy$  are well defined and  $1\sigma$  from PDF propagates to  $1\sigma$  on  $d\sigma/dy$  (basically Hessian approach see review Watt PDF4LHC Feb 08)
- If such a fit is a valid fit, it also has produced valid improved values for the eigenvectors.
- If you trust my luminosity derived in this way, you should trust my eigenvector values too.

# Is the procedure that produces PDFs consistent?

- BUT my eigenvector values are more precise than values that would be given by the global fit.
- Or to put it another way, (as has been asked at these meetings before), what is the statistical implications of defining errors from  $\Delta \chi^2$ =50 or 100?
- Effectively my data is deweighted by factor 4-6 (Cousins PDF4LHC Feb08)
- So should my luminosity estimate also be deweighted by factor 4-6? Should I magnify my error bars?
   1% statistical precision -> 4-6%?
- Choices in, and understanding of global fit, critical to interpretation of uncertainties on  $\sigma_7$

#### Is the procedure that produces PDFs consistent?

- I think  $\Delta \chi^2$ =50 or 100 hides bad global data and model systematics. So confidence level interpretation of error band may be valid, but assuming a Gaussian behaviour within this envelope is not.
- Constrained fit for  $\frac{d\sigma}{dy}$  possibly invalid.
- So how should experimental data interact with theory?
- New MSTW c.l. approach probably a more accurate and consistent statement of situation (see Watt PDF4LHC Feb 08)
- But need to think how to use this information correctly when measuring  $\sigma_7$  experimentally.

# Some Comments on Theory/Experiment in Z cross-section

(Ronan McNulty)

A number of issues arose in the preceding work which have been discussed at some length with Robert, and might usefully be brought to this forum....

#### Z could be used to measure the luminosity

# Getting to 1% uncertainty on $\sigma_Z$ requires:

- 1. Understanding model dependence
- 2. Understanding methodology of experimental and theoretical fitting procedures.