

Search for scalar leptoquarks in pp collisions at $\sqrt{s} = 8$ TeV with ATLAS detector

Abstract

The poster is dedicated to a search for pair-produced scalar leptoquarks using 20.3 fb⁻¹ of data recorded by the ATLAS detector at $\sqrt{s} = 8$ TeV. Leptoquarks are hypothetical particles with non-zero lepton and baryon numbers, predicted by many extensions of the Standard Model, and can provide an explanation for the similarity between the quark and lepton sectors. Searches for pair-produced scalar leptoquarks have been performed with final states including Ieptons. Thereby the new limits on the leptoquarks mass were set at 95% Confidence Level arXiv:1508.04735 [hep-ex].

Model outlines

- Leptoquarks (LQs) are predicted by several theories of physics beyond Standard Model: Grand Unification Theories (SU(5), Constrained Salam model SU(4), Superstring Composite Technicolor model;
- They carry:
- both leptonic and baryonic charges;
- fractional electrical charge;
- LQs are grouped into three generations as leptons and quarks;
- pair-production cross-section in pp collisions:
 - \triangleright depends on strong coupling constant $\alpha_s(\Rightarrow$ $M_{LQ});$
- doesn't depend on the unknown fermionic LQlepton-quark coupling constant λ_{LO-l-q} ;
- LQs and it's decay products lepton and quark are restricted to be of the same generation (diagonal coupling), to prevent the proton decay; LQs appear as mediators of quark-lepton
- transitions; λ_{LQ-l-q} is limited by previous

analyses in HERA → decay is

LQ1 (eejj) and LQ2 ($\mu\mu jj$):

- Major backgrounds:
- $-Z/\gamma^* + jets$: from *Monte Carlo* (**MC**) + constrained in dedicated *control region* (CR) $|m_{ll} - m_Z| < 30$ GeV (20 GeV for muons);
- $-t\bar{t}$: from MC + CR of leptonic requirement of 1 electron and 1 muon;
- Other backgrounds:
- *Dibosons*: from MC;
- $-Z/\gamma^* \rightarrow \tau \tau$, Single t + W : MC;
- -Fake leptons (QCD, W + jets, Single t: s- and tchannels): data-driven via matrix method

Leptoquarks pair-production gluon-gluon fusion: quark-antiquark annihilation:

$LQ3 (b\nu_{\tau}b\nu_{\tau})$: $LQ3 (tv_{\tau}tv_{\tau})$: Major Major backgrounds: backgrounds: MC +CR via transverse mass m_T $-\mathbf{Z}/\mathbf{\gamma}^*(\rightarrow \mathbf{\nu}\mathbf{\nu}) + b\overline{b}$ and b-tagged jets (dominant): MC + requirements; CR of opposite sign di-leptons; $-W(\rightarrow l\nu)$ + jets: MC + CR via transverse -t quark production mass m_T requirement $t\bar{t}$: MC + CR of 1 and b-tagged jets lepton; veto; −W boson + heavy flavor quarks: MC + CR; Signal region (LQ3, m_{CT}): Signal region (LQ3, E_T^{miss}). Data vs = 8 TeV, 20.1 fb⁻¹ Data It W+jets Other Total SM $\sqrt{s} = 8 \text{ TeV}, \int L dt = 20.3 \text{ fb}^{-1}$

Backgrounds

180

180

1190

- variables; Major backgrounds are supplied with CRs – to $Z/\gamma^* \rightarrow \mu\mu$ control region (LQ2, $m_{\mu\mu}$): $t\bar{t}$ control region (LQ1, muon's p_T): effectively constrain corresponding
- Regions: Joint likelihood model is test to hypotheses;

and variations in Signal

CLs method is applied for signal cross-section limits extraction;

SR8

800-1300

SUMMARY

Latest ATLAS results ($\sqrt{s} = 8 \text{ TeV}$) for scalar leptoquarks search:

Excluded leptoquark's mass ranges at 95% CL under BR(LQ→lq)=1 for first, second and third generation:

Cha	ınnel	Excluded leptoquark's mass range (95% CL, BR(<i>LQ→lq</i>)=1), [GeV]
е	ejj	$m_{LQ1} < 1050$
μμ	ujj	$m_{LQ2} < 1000$
$ u_{\tau} u$	$\gamma_{ au} bb$	$m_{LQ3} < 625$
$ u_{ au}$ 1	$v_{ au}tt$	$210 < m_{LQ3} < 640$

• Limits in terms of β (branching fraction of the LQ decay into a charge lepton and a quark) VS m_{LO} are set for first and second generations.