

R. Jacobsson

LHCb LS2 Upgrade

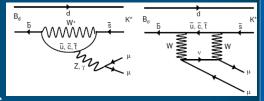
R. Jacobsson

on behalf of the LHCb Collaboration

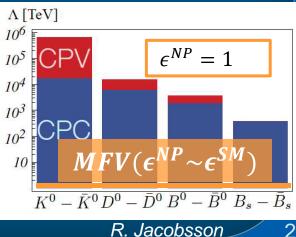
Outline

- LHCb objectives and upgrade motivations
- LHCb features and limitations
- Upgrade strategy
- Physics prospects
- Conclusions

In Praise of Precision Measurements



- Precision measurements likely to have the largest discovery potential for new physics
 - Higgs and top precision physics
 - Flavour precision physics
 - Complemented by direct searches at high scales AND low scales
- → LHCb focus on measuring *indirect* effects of New Physics in CP violation and rare decays
 - Searching deviations from the SM
 - Virtual effects allow probing energies much higher than E_{cms} of the LHC
- b and c sector contains large repertoire of decays and topologies
 - New Physics may enter differently in boxes and in penguin contributions
 - → Aim for access to "all" modes
- Upgrade aim: reach experimental sensitivities \leq theoretical uncertainties
 - Not expected to be limited by systematics \rightarrow often improves with increasing statistics
 - σ_{theory} often decrease with complementary measurements


\rightarrow 10-fold our statistics and improve access to hadronic modes

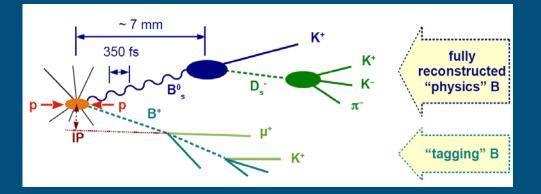
- 1. Increase luminosity
- 2. Increase efficiency of hadronic channels by factor >2
- 3. Improve output bandwidth and lower p_T
- → Gives access to new modes and observables

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

 $\sigma_{stat+sys+th}$

Key features of LHCb at LHC

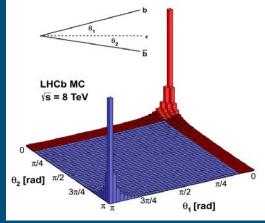
6 Large signal cross-sections

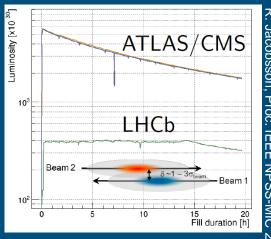

- >100 kHz \rightarrow 1 MHz of $b\overline{b}$ pairs at LHCb interaction point
- Access to all b-flavored hadrons B_u (~40%), B_d (~40%), B_s (~10%), and B_c , and B-baryons Λ_b (~10%), ... (arXiv:1111.2357v2, arXiv:1301.5286)
- cc production 20x more

• The final state $b\overline{b} / c\overline{c}$ pair are Lorentz boosted

- → The B / D hadrons appear in the same hemisphere
- → Very good proper time resolution

→ Flavor tagging


- Same side, uses π or K emitted together with signal B/D hadron
- Opposite side, detects flavor of partner B/D hadron from decay



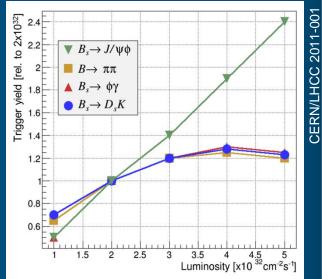
Operating at a controllable levelled luminosity

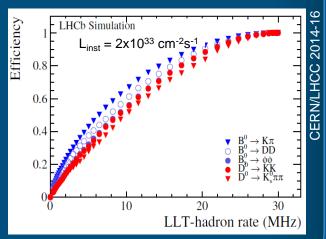
Control detector performance and systematics

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

3

R. Jacobsson

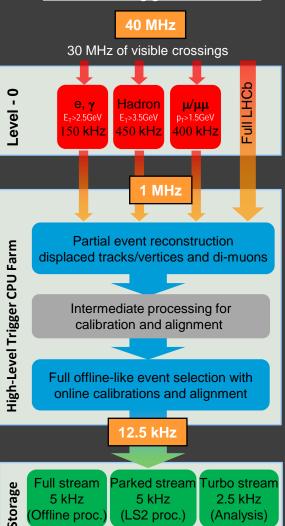



Current limitation: FE readout time = 900ns → Max 1.1 MHz ensured by L0 trigger

- At high pileup p_T does not discriminate in hadronic modes
 → Yield of hadronic modes saturates
- Efficient selection requires full detector
 → IP, p_T of tracks, and PID

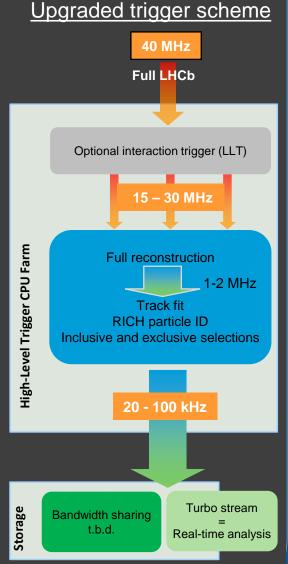
<u>Upgrade baseline:</u> Target L= $2x10^{33}$ cm⁻²s⁻¹

- ➔ Trigger challenge
 - 2% of bunch crossings with b-hadron decay in VELO
 - 25% of bunch crossings with c-hadron decay in VELO
 - 2 light long-lived hadrons decay in VELO every bunch crossing
 - →Background suppression → signal classification
- 1. Remove First Level Trigger
- 2. Replace all FE/BE for 40 MHz full readout to CPU farm
- 3. Implement a fast HLT based on full topology
- 4. Final output bandwidth at >20 kHz
- 5. Replace main tracking and improvements to PID
- Ultimate trigger flexibility to adjust to physics scene!

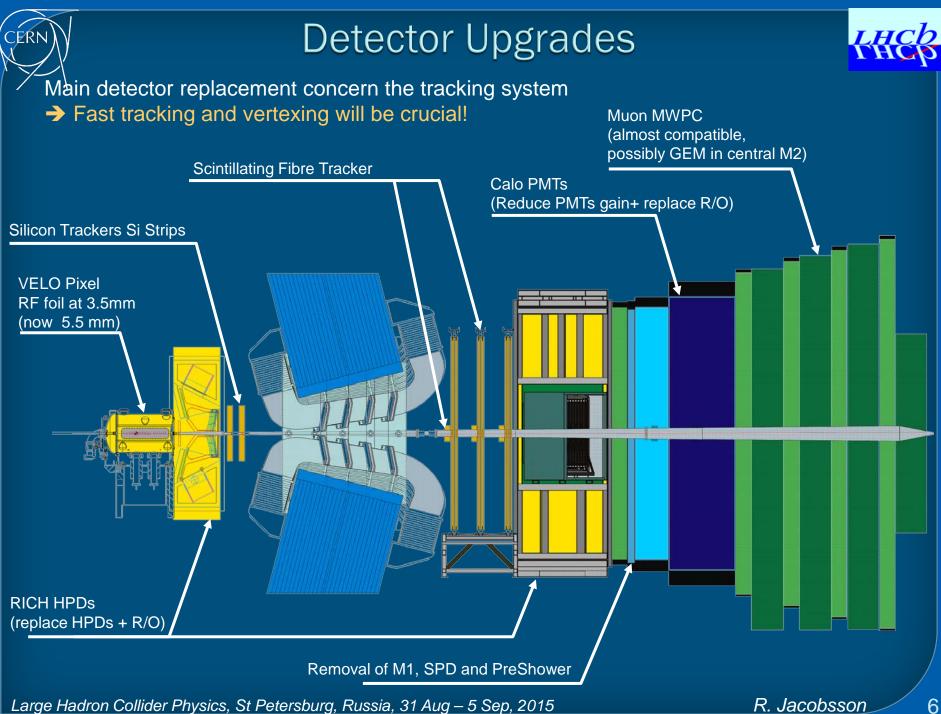


Current and Upgraded Trigger

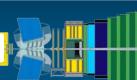
LHCb



ERN


_				
Decay	Run 1	Upgrade		
	L0xHLT	@25kHz		
Β⁰ → Κ*[Κπ]μμ	89%	94%		
Β _s →φ[KK]φ[KK]	20%	79%		
B⁰ → D⁻[Kππ]μν	63%	81%		
Λ _b →pμν	54%	59%		
B⁺→πKK	36%	86%		
Β _s →J/ψ[μμ]φ[KK]	91%	93%		
B⁰→D⁺[Kππ]D⁻[Kππ]	18%	56%		

CERN/LHCC 2014-16

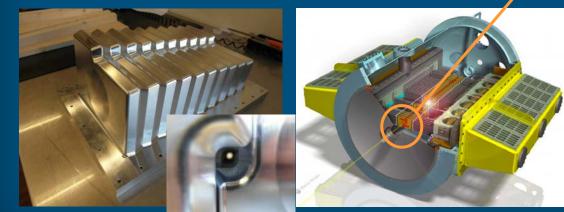


Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

<u>5</u>

VELO Upgrade

Current VELO:


 $R\phi$ silicon micro-strip with pitch 83-101 μm at 8mm from beam with 300 μm RF foil

Upgrade:

- Higher granularity and improved resolution
 - → $55 \times 55 \ \mu m^2$ silicon pixel, 200 μm thickness
 - → Reduced sensor distance to beam (5.1mm)
 - → New RF foil ~150 µm
 - → VeloPix readout chip with 130 nm technology to withstand ~400 MRad

• Cooling challenge

- Close to beam: $\sim 8 \times 10^{15} n_{eq} \text{cm}^{-2}$ for 50 fb⁻¹
- Cool to -20°C to prevent thermal runaway
- \rightarrow Micro-channel CO₂ cooling

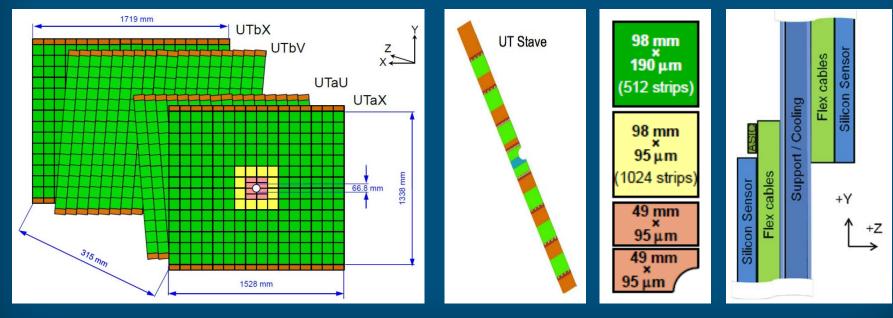
Upstream Tracker

Data/Power cable

Hybrid

Hybrid Flex

Module Support


Sensor

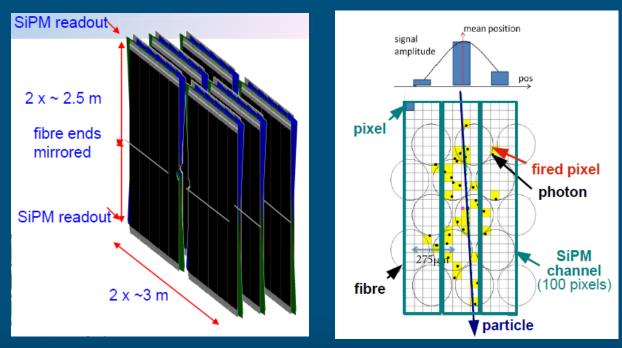
ASICs

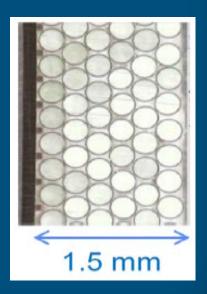
• Redone with Si strip technology: four layers of Si micro-strips

- Less material with thinner sensors (500 μ m \rightarrow 250 μ m)
- Better coverage by overlapping sensors
- Readout strip geometry adapted to particle flux
- Closer to beam pipe improve small-angle acceptance
- → Fast VELO-UT momentum measurement
- → Reduce fake VELO-IT/OT tracks

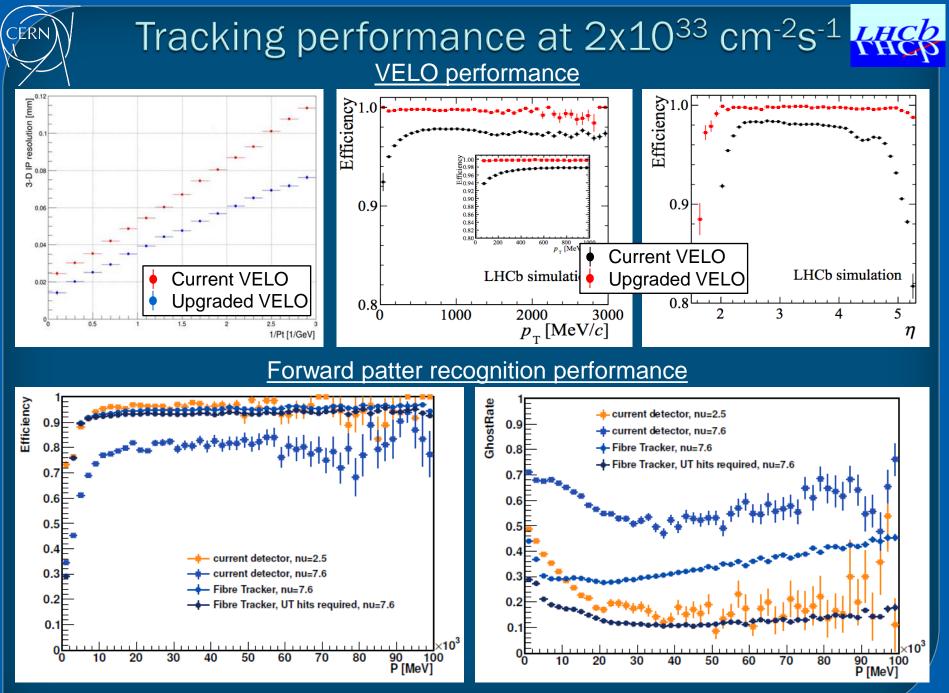
Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

<u>8</u>




Downstream Tracker

Replacing completely straw tube and inner Si strips: Scintillating Fibres (SciFi)

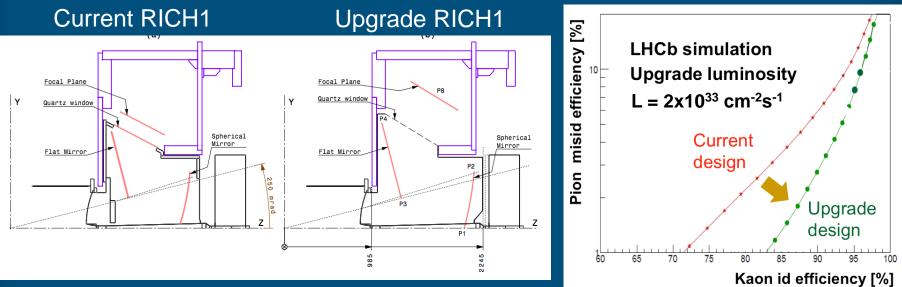

- 6 layers of 2.5 m long scintillating fibres with 250 µm diameter
- Need to ensure fibres straight to ~50 μm and flat to ~200 μm over 2.5m
- Silicon Photo-Multiplier (SiPM) readout
- Neutron damage to SiPM: cooled to -40°C
- → Expected performance: 50 75 µm spatial resolution
- → Fast track reconstruction in trigger

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

<u>9</u>

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

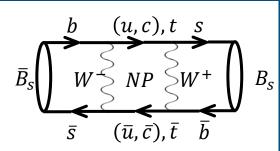
R. Jacobsson

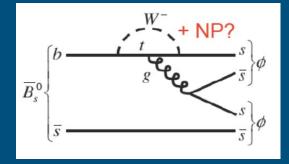

10

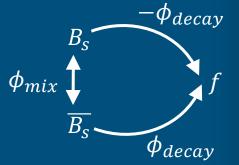
RICH Upgrade

- Partial upgrade of both RICH1 and RICH2:
 - Replace HPDs for 64-channel MAPMT
 - Re-optimize RICH1 mirror optics
 - Spread out rings within current gas enclosure to compensate for higher occupancy

Upgraded K/ π performance

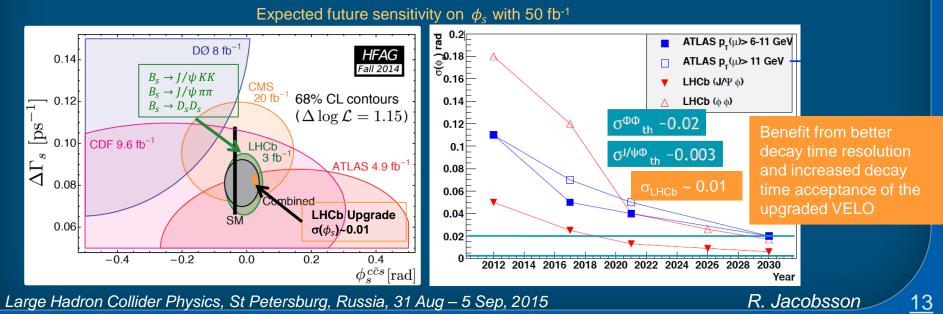

Status and schedule LHCK All Technical Design Reports done LHCD DREAD LHCb LHANK Framework HCb PGRAD GRAD UPGRADE **HCb UPGRADE** LHCD IPGRAD rticle Identification Par Letter of Intent **Technical Design Report Technical Design Report Technical Design Report** Technical Design Report **Technical Design Report** LHC Era **HL-LHC** Era Run 1 Run 2 Run 3 Run 4 Run 5 Run (2021 - 2023)(~2027 - 2029) (Years) (2010 - 2012)(2015 - 2018)(~2031 -) Integrated ~100 fb⁻¹ 3 fb⁻¹ ~25 fb⁻¹ 8 fb⁻¹ ~50 fb⁻¹ luminosity **Current LHCb Upgraded LHCb**


12


R. J.

Example of prospects: ϕ_s

 \sim CP violating weak phase from the interference between mixing and decay of B_s



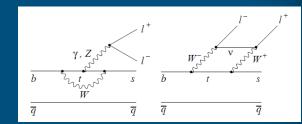
1. Final state with charm: Tree-level decay $\rightarrow \phi_s^{c\bar{c}s}$

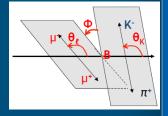
• Sensitive to NP in mixing: $B_s \to J/\psi \phi \ (B_s \to J/\psi f^0, B_s \to D_s D_s)$

 $\phi_s = \phi_{mix} - 2\phi_{dec}$

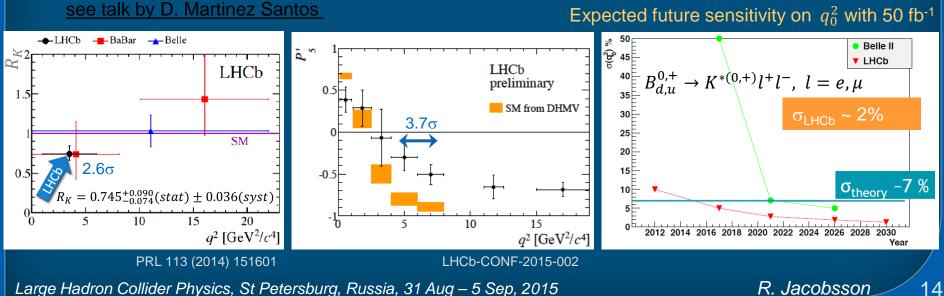
- 2. Final state with strange: Gluonic penguin $\rightarrow \phi_s^{s\bar{s}s} = 0$ in SM due to cancellation
 - SM null test sensitive to NP in mixing and decay: $B_s \to \phi \phi \ (B_d \to \phi K_s, B_d \to \eta' K_s)$

Example of prospects: $b \rightarrow sl^+l^-$




Electroweak penguin/box diagram sensitive to NP -> Helicity structure

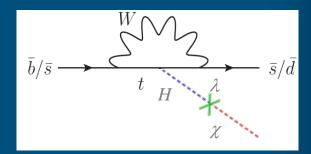
- $B_d \rightarrow K^* \mu^+ \mu^-, \ B_s \rightarrow \phi \mu^+ \mu^-$
- 4-body angular analysis as a function of $q^2 = M^2(ll)$

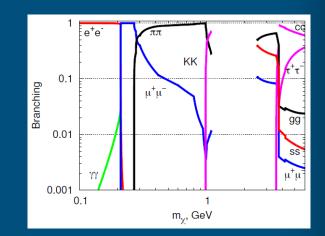

E.g.
$$A_{FB}(q^2) = \frac{\Gamma(\cos\theta_{Bl^+}>0) - \Gamma(\cos\theta_{Bl^+}<0)}{\Gamma(\cos\theta_{Bl^+}>0) + \Gamma(\cos\theta_{Bl^+}<0)}$$
, $A_{FB}(q^2) = 0$

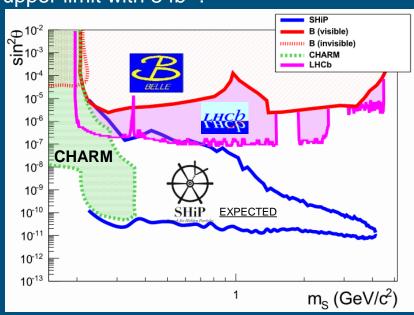
E.g.
$$A_T^{(2)}(q^2) = \frac{|A_{\perp}(q^2)|^2 - |A_{\parallel}(q^2)|^2}{|A_{\perp}(q^2)|^2 + |A_{\parallel}(q^2)|^2}$$

- Currently $b \rightarrow sl^+l^-$ only measurements with some interesting tensions \odot
 - Lepton universality $R_K = \frac{Br(B^+ \to K^+ \mu^+ \mu^-)}{Br(B^+ \to K^+ e^+ e^-)}$ together with P'_5 in the differential decay rate in $B_d \to K^* \mu^+ \mu^-$

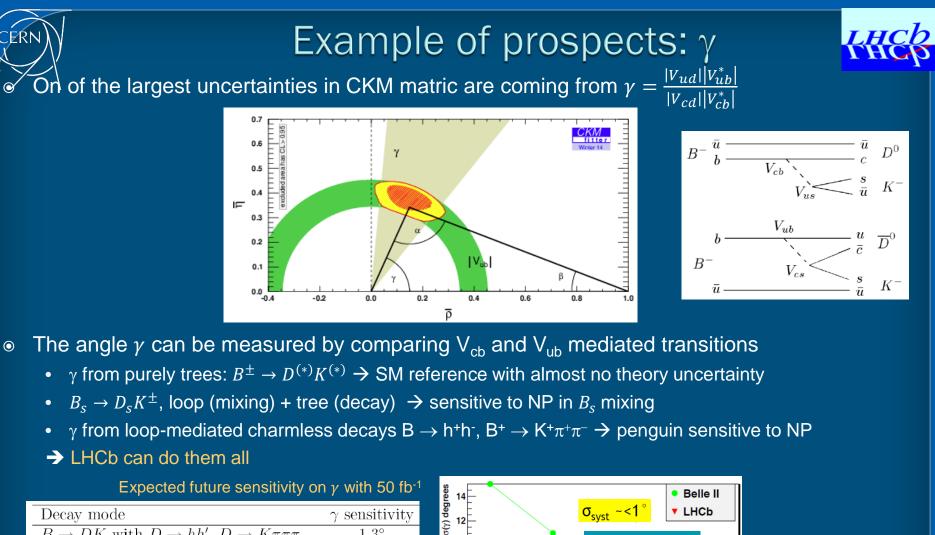
Example of prospects: Long-lived exotics

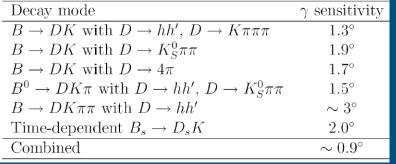

Ex. Search for hidden scalars in $b \rightarrow sll$ see talk by F. Redi

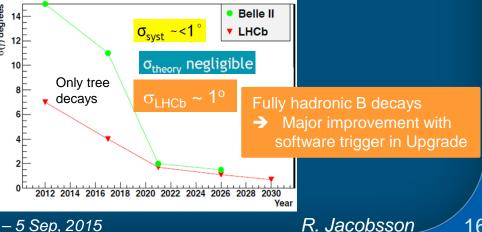

- Scalar portal from mixing with Higgs $\mathcal{L} = (g\chi + \lambda\chi^2)H^{\dagger}H$
 - Lifetime $\tau \propto \sin^{-2} \theta$, e.g. $\tau_{\chi} \sim 10^{-8} 10^{-9} s$ for an inflaton

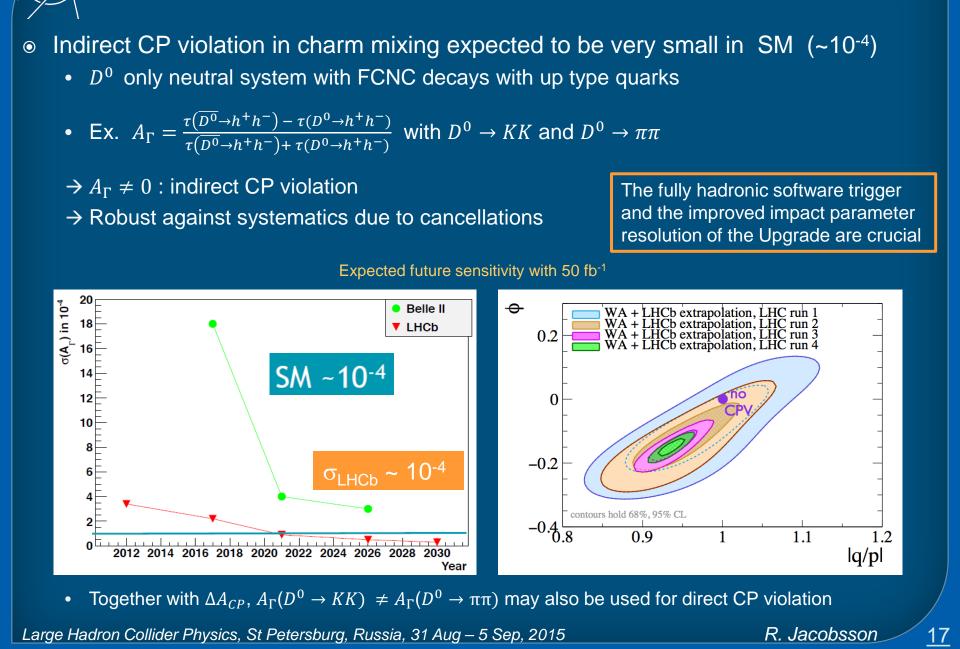

➔ Displaced vertex

• $b \rightarrow s \chi(\mu^+\mu^-)$ dominating up to hadronic threshold


Results are the most constraining exclusion limit on the process


• Analysis largely background free \rightarrow sensitivity scales with yield of B


Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015


15

16

Example of prospect: Charm CPV

	Upgrade Phy	sics P	rospe	cts	
>		+ papers counting	Far from σ_{ti} at end of Ru		
Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory (SM)
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
8 0	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.09	0.05	0.016	~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B^0_s \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	0.20	0.13	0.030	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5 \%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	—
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.12	—

+ a wealth of additional physics

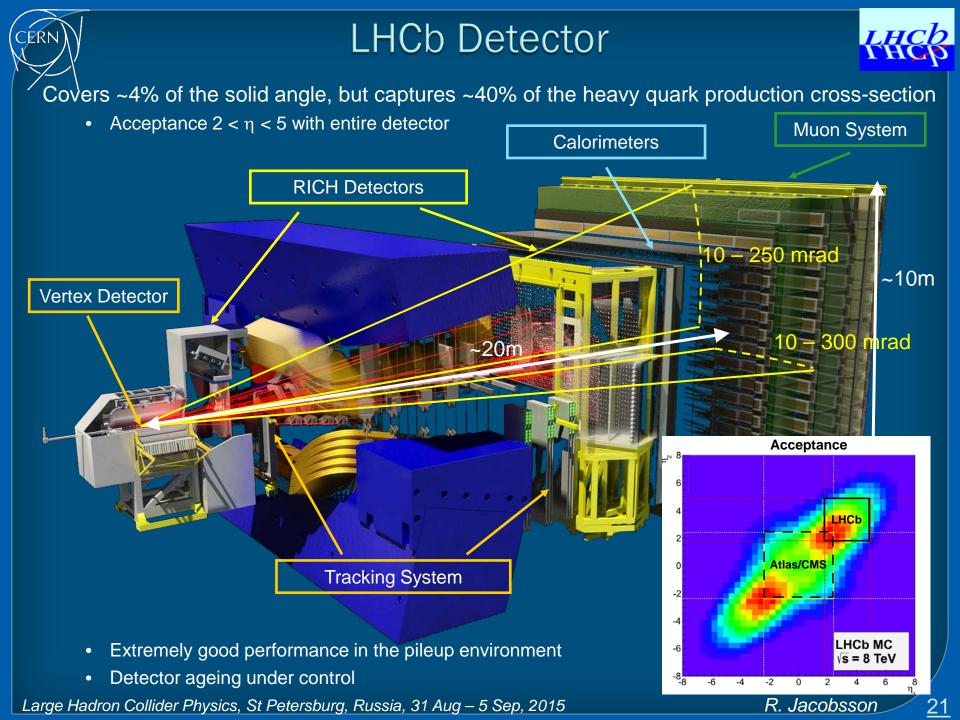
- \rightarrow Diversity and non-spectator effect of the B_c system, and baryons
- → Lepton universality, lepton flavour violation, searches for long-lived "portals"
- Production measurements and spectroscopy, QCD, PDFs, and EW
- ...and quarkonium and Z production in pA and possibly also AA collisions

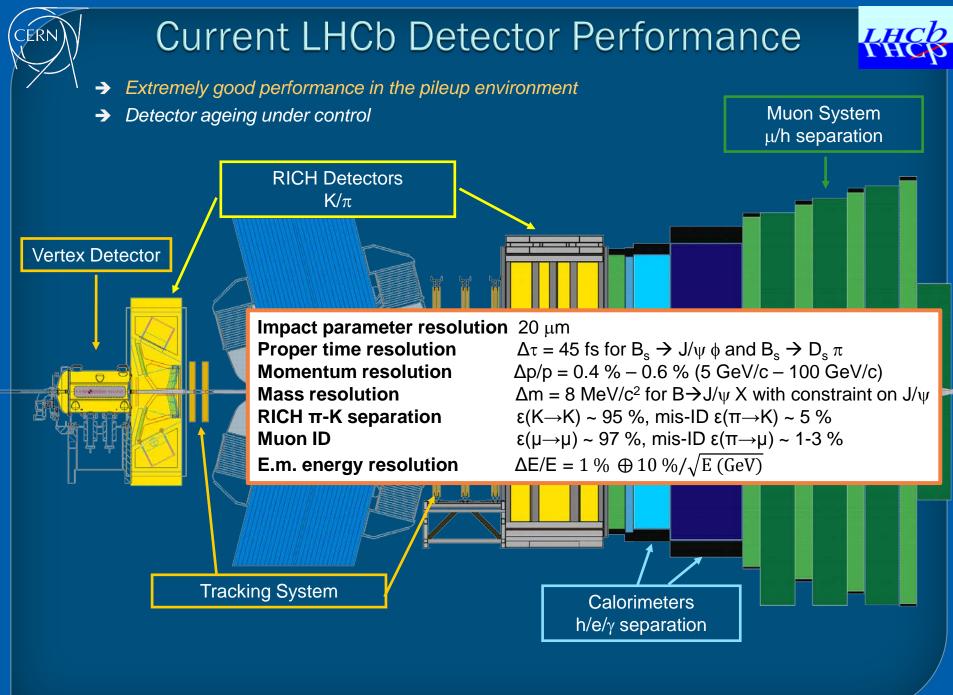
Conclusions

- LHCb has fought hard to earn the title of forward GPD
 - LHCb has demonstrated forward tracking and particle ID in pileup environment
 - A very rich physics precision program
- Folding in efficiencies and luminosity, upgrade get up to 20 times more hadronic events per second !
 - Upgrade allows reaching theoretical uncertainties and opens the door to new observables
- But strength is the full software trigger to tune to any signature that may be popular in 2020!
- The LHCb Upgrade has been fully approved by CERN and is in the production phase.
- In continuous search for new flavours!

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

19




EXTRA SLIDES

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – 5 Sep, 2015

<u>20</u>

Large Hadron Collider Physics, St Petersburg, Russia, 31 Aug – <u>5 Sep, 2015</u>

22