Higgs boson width measurements with different methods at LHC

Roberto Di Nardo¹ On behalf of the ATLAS and CMS collaborations

¹LNF INFN

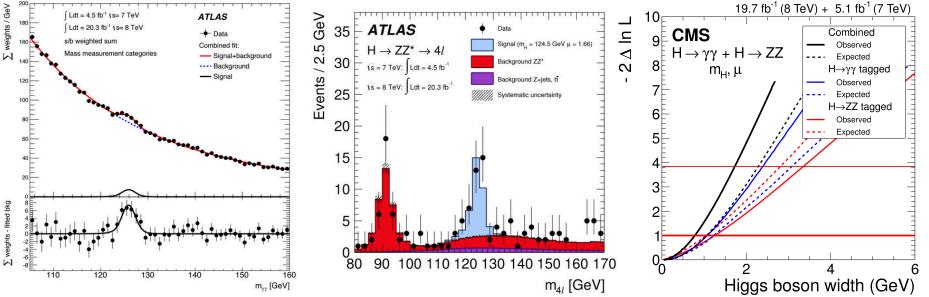
LHCP2015 - The Third Annual Large Hadron Collider Physics Conference

INFN

Istituto Nazionale

di Fisica Nucleare

August 31 – September 5, 2015 St. Petersburg, Russia

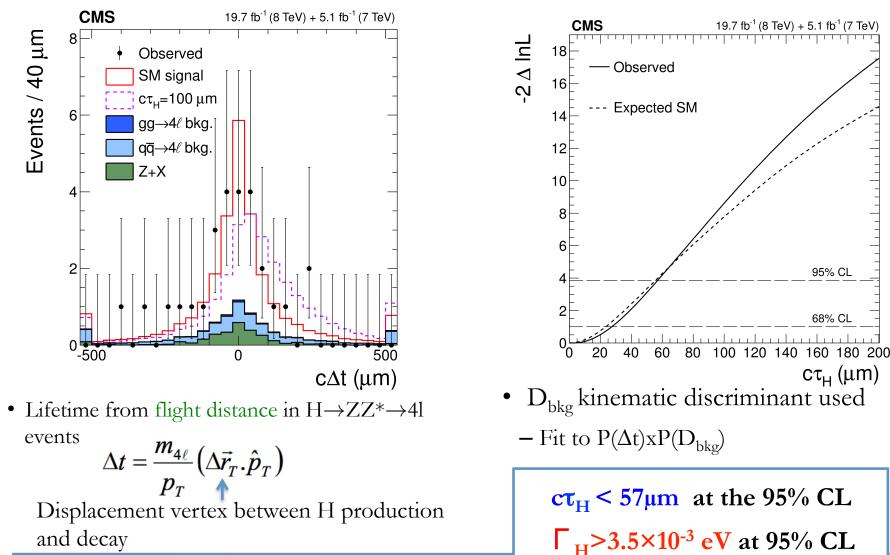

Outline

- ATLAS and CMS used the full potential of RUN1 LHC data for an accurate Higgs boson characterization
 - -Is the boson discovered the SM Higgs boson?
- Several properties studied (i.e. mass, signal strength, couplings, spin and parity...)
- This Talk: Higgs Boson Width
 - Direct limit on the Higgs boson width
 - Lower bound exploiting the Higgs boson lifetime
 - Indirect limit through Higgs boson offshell production
 - HL-LHC prospective
- Complementary to the direct searches for Higgs boson to invisible decays and constraints coming from the Higgs boson coupling tests

Direct width measurement: upper bound

- In the Standard Model the $\Gamma_{H,SM}$ prediction is ~4.1 MeV for m_H=125 GeV
- Direct measurement using m_{4l} and $m_{\gamma\gamma}$ spectra
 - Limited by experimental resolution (~1-2%)

- CMS upper limit on $\Gamma_{\rm H}$ combining $H \rightarrow ZZ^* \rightarrow 41$ and $H \rightarrow \gamma\gamma$:
 - $-\Gamma_{\rm H}$ < 1.7 GeV at 95% CL (exp. 2.3 GeV), m_H and signal strength profiled (free to float in the fit)
- ATLAS $H \rightarrow ZZ^* \rightarrow 41$: $\Gamma_H < 2.6$ GeV at 95% CL (exp. 3.5 GeV for the observed signal strength), similar direct limits using $H \rightarrow \gamma\gamma$
 - >400 times larger wrt SM prediction



EPJ C 75 (2015) 212

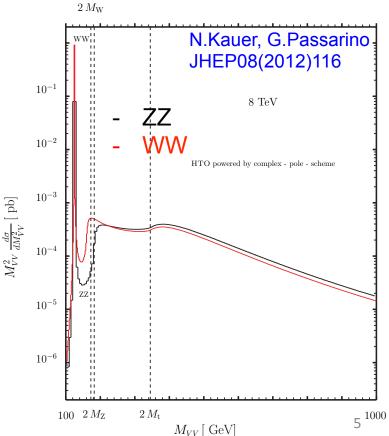
Phys. Rev. D 90(2014) 052004

Lower bound: Higgs lifetime

- Possible to set a lower bound on the Higgs width using its lifetime
- In the SM the $\tau_{\rm H} \sim 4.8 \ 10^{-8} \,\mu{\rm m/c}$ (far from experimental sensitivity)

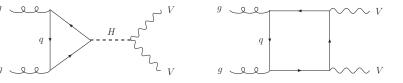
arXiv:1507.06656

Limit on $\Gamma_{\rm H}$ through off-shell production


- High mass region of $H \rightarrow VV$ above the $2m_V$ threshold sensitive to the Higgs boson production through off-shell and background interference effects
 - characterize the properties of the Higgs boson through off-shell signal strength and off-shell Higgs boson couplings
 - Sensitivity to new physics that change interaction between the Higgs and SM particle in this region
- $\sigma_{\text{offshell}} \sim g_g^2 g_V^2$ and doesn't depend on total width Γ_{H} as σ_{onshell} does
- In terms of couplings modifiers

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$

$$\frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}, \text{SM}}^{gg \to H \to ZZ}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

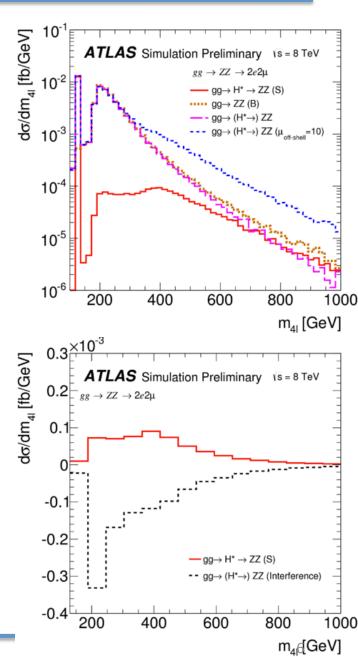

 Assuming the on-peak and off-peak couplings are the same, we can reinterpret the limit on μ_{offshell}, combined with μ_{onshell} measurement, as a limit on Γ_H

Interference effects and MC generators

 In the high mass region off-shell Higgs production and non resonant gg→ VV background (box diagram)

- Interference between the two processes sizable and negative in SM
- Similar for $qq \rightarrow VV+2j$ and VBF production

ggF production mechanism


- MCFM and gg2VV (LO, $\mu_{R}{=}\mu_{F}{=}m_{ZZ}^{}/2)$
 - $gg \rightarrow (H^*) \rightarrow ZZ gg \rightarrow H^* \rightarrow ZZ, gg \rightarrow ZZ$
- Sherpa (0j+1j) for $p_{T(ZZ)}$ description (ATLAS)

VBF production mechanism

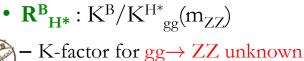
- MadGraph and Phantom used
- Other production mechanisms (VH,ttH) negligible

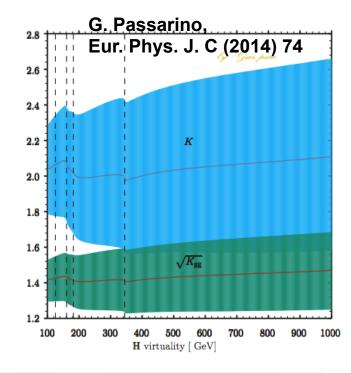
qqZZ background

- Powheg NLO QCD + corrections NLO EW
 - also NNLO m_{ZZ} k-factor in ATLAS

$\mu_{offshell}$ dependence and K-factors

• Possible to obtain a sample with an arbitrary value of $\mu_{offshell}$ combining the SM expectations for $gg \rightarrow H^* \rightarrow ZZ$, $gg \rightarrow (H^* \rightarrow)ZZ$ and $gg \rightarrow ZZ$: $\mu MC_{gg \rightarrow H^* \rightarrow ZZ} + \sqrt{\mu} MC_I + MC_{gg \rightarrow VV}$

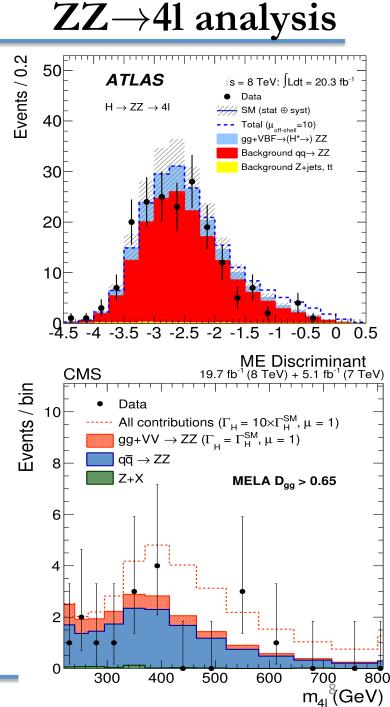

$$\begin{split} \mathrm{MC}_{gg \to (H^* \to) ZZ}(\mu_{\mathrm{off}\text{-shell}}) &= \left(\mathbf{K}^{H^*}(m_{ZZ}) \cdot \mu_{\mathrm{off}\text{-shell}} - \mathbf{K}^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{\mathbf{R}^B_{H^*}} \cdot \mu_{\mathrm{off}\text{-shell}} \right) \cdot \mathrm{MC}^{\mathrm{SM}}_{gg \to H^* \to ZZ} \\ &+ \left(\mathbf{K}^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{\mathbf{R}^B_{H^*}} \cdot \mu_{\mathrm{off}\text{-shell}} \cdot \mathrm{MC}^{\mathrm{SM}}_{gg \to (H^* \to) ZZ} \right) \\ &+ \left(\mathbf{K}^{H^*}_{gg}(m_{ZZ}) \cdot \left(\mathbf{R}^B_{H^*} - \sqrt{\mathbf{R}^B_{H^*}} \cdot \mu_{\mathrm{off}\text{-shell}} \right) \cdot \mathrm{MC}^{\mathrm{cont}}_{gg \to ZZ}, \end{split}$$

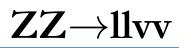

 $K^{H*}(m_{ZZ})$: NNLO/LO K factor for the signal

- Includes contribution from qg qq initial states
- Calculated inclusively (integrated over jet p_T and $p_T(ZZ)$ induced by higher order QCD corrections)
- 20-30% QCD scale uncertainty

K^{H*}_{gg}(**m**_{ZZ}) : NNLO/LO K factor for the gg initiated process

– Only gg contribution and larger uncertainty wrt $K^{H*}(m_{ZZ})$

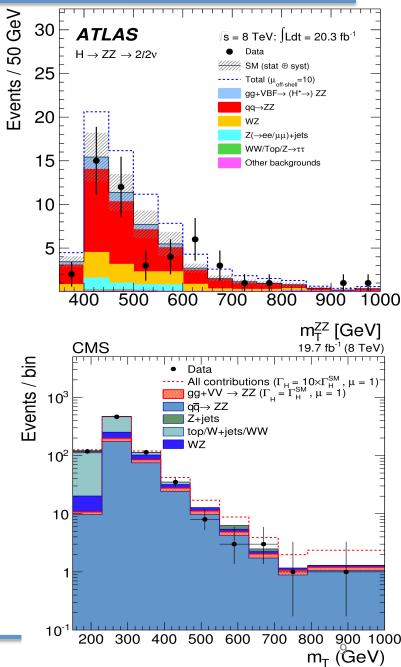


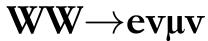


- 4l analysis designed to be mostly inclusive wrt additional QCD activity
- Selection similar to the one used for the on-shell coupling results both for ATLAS and CMS
 - 2 opposite-sign same-flavour pairs of isolated and prompt leptons
 - Signal region m₄₁>220GeV
 - A leading order matrix element based discriminant used to enhance the sensitivity to the $gg \rightarrow H^* \rightarrow ZZ$ (ATLAS) or $gg \rightarrow (H^* \rightarrow)ZZ$ (CMS)

$$ME = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right) \qquad \qquad \mathcal{D}_{gg} = \frac{\mathcal{P}_{tot}^{gg}}{\mathcal{P}_{tot}^{gg} + \mathcal{P}_{bkg}^{q\bar{q}}}$$

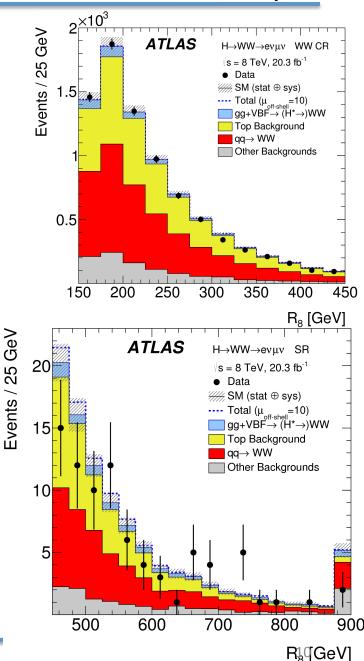
- $\rm m_{41}~m_{Z1}~m_{Z2}$ and 5 production/decay angles used to calculate the ME for the different processes with MCFM
- Fit to the ME discriminant shape (ATLAS) or m_{4l} -ME (CMS) to extract the limit on $\mu_{offshell}$




- Similar sensitivity to the 4l analysis
 - Profit from factor 6 higher BR
- Selection cuts:
 - High E_T^{miss} , m_{ll} compatible with Zboson mass within ±15 GeV
- Signal region:
 - ATLAS: 350GeV<m_T<1TeV
 - CMS: 180GeV<m_T<1TeV
- Main backgrounds

ML fit to m_T^{ZZ}

- $qq \rightarrow ZZ$, WZ: MC based estimation
- WW/tt/Zττ: estimated inclusively with eµ events assuming lepton flavour symmetry
- Z+jets: data-driven with ABCD method
 - (ATLAS), from γ+jet control sample (CMS)



- Based on inclusive on-shell H→WW*→lvlv analysis but inclusive in jets
 - eµ final state is most sensitive and orthogonal with $ZZ \rightarrow 2l2v$ final state
- R_8 variable that combines the m_{ll} and m_T information is used in the analysis

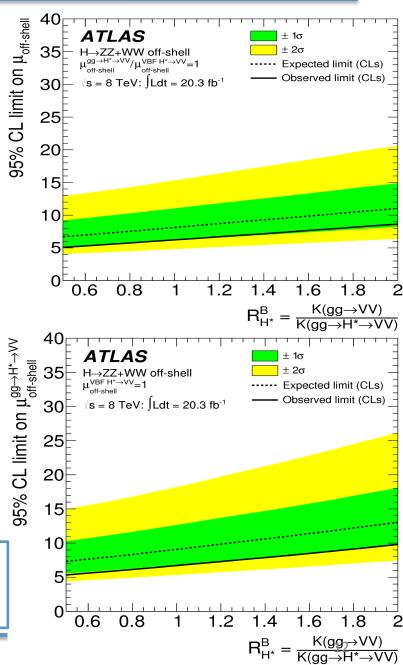
$$R_8 = \sqrt{m_{\ell\ell}^2 + \left(a \cdot m_{\rm T}^{WW}\right)^2}$$

 R_8 cut and *a* value optimized for off-shell signal sensitivity and rejecting on-shell H \rightarrow WW*

• ML fit observable: yields in the signal region $(R_8 > 450 \text{ GeV})$ and top, WW control regions

- Systematic uncertainties dominated by theoretical uncertainties
 - QCD scale uncertainty for $gg \rightarrow (H^* \rightarrow)$ VV and $qq \rightarrow VV$
 - PDF for $qq \rightarrow VV$ and for $gg \rightarrow VV$ processes
 - Uncertainty due to unknown NNLO k-factor for the gg \rightarrow VV
 - ATLAS: gives the result as function of the ratio between gg \rightarrow VV and signal NNLO k-factors $R^{B}_{H^{*}}$ [0.5-2]
 - CMS: assumes same signal NNLO K-factor for the bkg and adds a 10% syst uncertainties.
 - Additional 30% uncertainty considered for the interference terms for ATLAS
 - Experimental uncertainties are subdominant for both ATLAS and CMS
 - Luminosity, lepton efficiencies, JES
 - Data driven background estimates

Systematic uncertainty ATLAS	95% CL lim. (CL_s) on $\mu_{\text{off-shell}}$
Interference $gg \to (H^* \to)VV$	7.2
QCD scale $\mathbf{K}^{H^*}(m_{VV})$ (correlated component)	7.1
PDF $q\bar{q} \rightarrow VV$ and $gg \rightarrow (H^* \rightarrow)VV$	6.7
QCD scale $q\bar{q} \to VV$	6.7
Luminosity	6.6
Drell–Yan background	6.6
QCD scale $K_{gg}^{H^*}(m_{VV})$ (uncorrelated component)	6.5
Remaining systematic uncertainties	6.5
All systematic uncertainties	8.1
No systematic uncertainties	6.5


Results: limits on $\mu_{offshell}$

- Combination of $ZZ \rightarrow 4l$, $ZZ \rightarrow llvv$, $WW \rightarrow ev\mu v$
- Provided by ATLAS under different assumptions
- 1 single $\mu_{offshell}$, equivalent to assuming the gg \rightarrow H to VBF production as predicted in the SM

 $\mu_{offshell} < 6.2$ @ 95% CL for R^B _{H*}=1 (expected: $\mu_{offshell} < 8.1$ @ 95%CL)

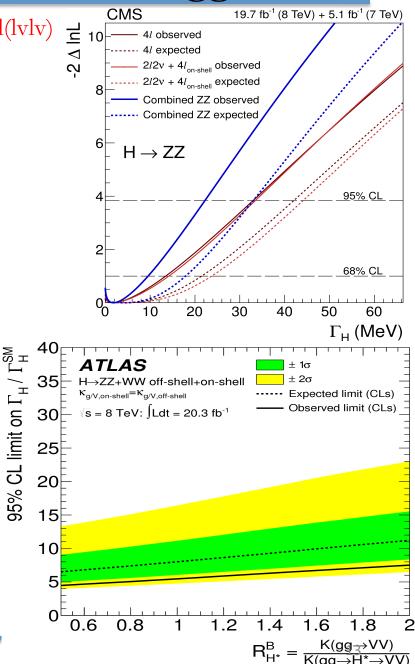
- VBF production fixed to the SM prediction while just the $\mu_{offshell}$ of the gg \rightarrow H* \rightarrow VV process is considered.
 - interpreted as constraint on offshell coupling strength of the $gg \rightarrow H^*$ production mode.

 $\mu_{\text{offshell}(gg \rightarrow H^* \rightarrow VV)} \leq 6.7 \text{ a} 95\% \text{ CL for } \mathbb{R}^{B}_{H^*} = 1$ (expected: $\mu_{offshell} < 9.1 @ 95\%$ CL)

Results: limits on the Higgs width

- Limits on $\Gamma_{\rm H}$ obtained by combining the on-shell 4l(lvlv) and off-shell signal strength measurements
 - μ_{ggF} and μ_{VBF} profiled on data
 - assumes same on-shell and off-shell couplings

CMS $\Gamma_{\rm H}$ < 22 MeV @ 95% CL (expected: $\Gamma_{\rm H}$ < 33 MeV (*a*) 95%CL) ATLAS $\Gamma_{\rm H} < 22.7 \text{ MeV}$ @ 95% CL for $R^{\rm B}_{\rm H*}=1$ (expected: $\Gamma_{\rm H}$ < 33 MeV (a) 95%CL) Assuming $\Gamma_{\rm H}/\Gamma_{\rm H,SM}$ =1, interpreted as limit on ratio of the off-shell to on-shell couplings to gluons (ATLAS)



Soberto Di

di Frascati

Nardo – INFN Laboratori nazionali

 $R_{gg} < 6.0$ @ 95% CL for $R^{B}_{H*}=1$ (expected: $R_{gg} < 9.0$ @ 95%CL)

Limits on $\Gamma_{\rm H}$ allowing anomalous couplings

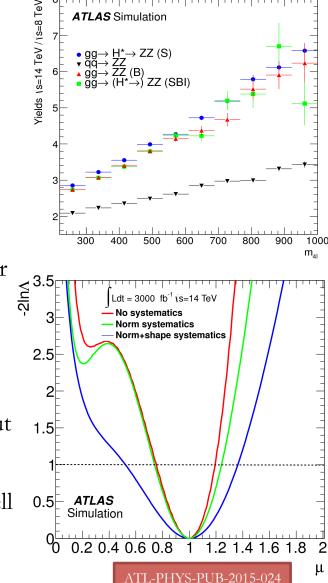
- Updated analysis by CMS including the possible anomalous coupling in HVV
 - Additional term Λ_Q depending on the Higgs boson invariant mass can be probed with offshell analysis (cannot be distinguished in the on-shell region)

$$A(\text{HVV}) \propto \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{V1} + q_{V2})^2}{(\Lambda_Q)^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^2 + q_{V2}^2)}{(\Lambda_1)^2} \right] m_V^2 \epsilon_{V1}^* \epsilon_{V2}^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

• Limits as function of effective cross-section fraction due to the Λ_Q term

$$f_{\Lambda Q} = \frac{m_{\rm H}^4/\Lambda_Q^4}{|a_1|^2 + m_{\rm H}^4/\Lambda_Q^4}$$

- Anomalous coupling in both production and decay for VBF and VH
 - Sensitivity enhanced introducing a 2-jet tag category


 $\Gamma_{\rm H} < 46 \text{ MeV at the 95\% CL}$ $(f_{\Lambda Q} \text{ left unconstrained,}$ $\text{expected: } \Gamma_{\rm H} < 73 \text{ MeV @ 95\% CL}$

- $\Gamma_{\rm H}$ < 26 MeV at the 95% CL (f_{ΛQ} = 0, expected: $\Gamma_{\rm H}$ < 41 MeV @ 95%CL)
- CMS 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻ -2 Δ InL Observed, $f_{\Lambda Q} cos(\phi_{\Lambda Q})$ unconstrained Expected, $\boldsymbol{f}_{_{\Lambda\boldsymbol{Q}}}\text{cos}(\boldsymbol{\varphi}_{_{\boldsymbol{\Lambda}\boldsymbol{Q}}})$ unconstrained 20 Observed, f,_=0 Expected, $f_{\Lambda Q} = 0$ 15 10 95% CL 68% CL 20 80 40 60 100 120 $\Gamma_{\rm H}$ (MeV)

Prospects for run2 and HL-LHC

- With the increase in statistics, it will be crucial to have the most accurate possible theoretical prediction
 - To reduce the dominant theoretical uncertainties on crosssections and shapes of the different components
 - Essential to move from LO to NLO MC development for gg→(H*→)VV and gg→VV processes (for less "QCDinclusive" analysis)
- Equally important is the development of MC generators for the main $qq \rightarrow VV$ background
- pp→WW/ZZ at NNLO cross sections and NNLO MC development
- At HL-LHC $\mu_{offshell}$ measurement sensitivity *a* 20% without theoretical systematic uncertainties (ATLAS)
- Under well-defined assumption and combining with on-shell measurement \rightarrow probe $\Gamma_{\rm H}$

- off-shell uncertainties dominate (on-shell ~5%)

Prospects for run2 and HL-LHC

(Dixon, Li)

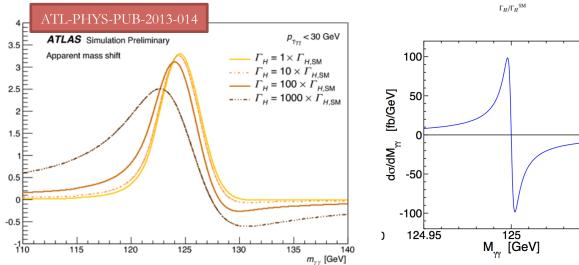
300

-100

-200 -300

-400

ΔM_H / MeV


1305.3854

5

- For $gg \rightarrow H \rightarrow \gamma \gamma$ the interference with the $gg \rightarrow \gamma \gamma$ background induces a distortion in the $m_{\gamma\gamma}$ mass shape and depends on $\Gamma_{\rm H}$
 - Needed to know the apparent mass shift induced

i / dm_{'''} [fb/GeV]

- Possible to extract an indirect limit on $\Gamma_{\rm H}$
- In the SM the shift is ~ -60MeV

- Interference effects are different depending on the $p_T^{\gamma\gamma}$
 - Possible control mass with $m_{\gamma\gamma}$ for events with p_{TH} >30GeV or using H \rightarrow ZZ* \rightarrow 4l
 - In the H($\rightarrow\gamma\gamma$)+2j channel, VBF and ggF contributions generate shifts of opposite signs \rightarrow good reference mass
- Expected limit by ATLAS at ~40 $\Gamma_{\rm H,SM}$ for 3000fb⁻¹

125.05

Destructive Interf. (SM)

Constructive Interf

15

Conclusions

- With RUN1 data, both CMS and ATLAS set first limits on the Higgs boson width
- Exploited both direct and indirect methods
- Direct measurement will be challenging also with RUN2 and HL-LHC statistics
- Indirect methods (under well-defined assumptions) provide already today limits @ 5 times the SM width
- Off-shell production of the Higgs boson gives interesting extra information about the coupling structure of the Higgs boson
 - Very interesting measurement to perform with RUN2 data (and HL-LHC)
 - $\mu_{offshell}$ measurement sensitivity @ 20% level with 3000 fb⁻¹ (no theoretical uncertainties)
 - Very important the theoretical knowledge of the gg→(H^{*})→VV process and the backgrounds at higher orders in QCD

backup

$R^B_{H^*}$	Observed		Median expected			
	0.5	1.0	2.0	0.5	1.0	2.0
$ZZ \rightarrow 4\ell$ analysis	6.1	7.3	10.0	9.1	10.6	14.8
$ZZ \rightarrow 2\ell' 2\nu$ analysis	9.9	11.0	12.8	9.1	10.6	13.6
$WW ightarrow e u \mu u$ analysis	15.6	17.2	20.3	19.6	21.3	24.7

