Vector boson production at the LHC: q_T resummation and leptonic decay

Giancarlo Ferrera

Milan University & INFN Milan

Based on: S. Catani, D. de Florian, G. F. & M. Grazzini, arXiv:1507.06937 [hep-ph]

3rd LHCP Conference - St. Petersburg - Aug. 31 2015

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \bigg[c_{12}L_{q_{T}}^{2} + c_{11}L_{q_{T}} + \cdots \bigg]$$
$$+ \alpha_{S}^{2} \bigg[c_{24}L_{q_{T}}^{4} + \cdots + c_{21}L_{q_{T}} + \cdots \bigg] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$.

Resummation of logarithmic corrections needed.

Giancarlo Ferrera – Università & INFN Milano

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \left[c_{12} \mathcal{L}_{q_{T}}^{2} + c_{11} \mathcal{L}_{q_{T}} + \cdots \right] \\ + \alpha_{S}^{2} \left[c_{24} \mathcal{L}_{q_{T}}^{4} + \cdots + c_{21} \mathcal{L}_{q_{T}} + \cdots \right] + \mathcal{O}(\alpha_{S}^{3})$$

with
$$\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1.$$

Resummation of logarithmic corrections needed.

Giancarlo Ferrera – Università & INFN Milano

State of the art: q_T resummation

- Method to resum large q_T logarithms is known [Dokshitzer,Diakonov,Troian('78)], [Parisi,Petronzio('79)], [Curci,Greco,Srivastava('79)], [Kodaira,Trentadue('82)], [Collins,Soper('81,'82)], [Collins,Soper,Sterman('85)], [Catani,de Florian, Grazzini('01)], [Bozzi et al.('06,'08)], [Catani,Grazzini('11)], [Catani et al.('13)].
- Phenomenological studies[Altarelli et al. ('84)], [ResBos:Balazs et al. ('95, '97)], [Guzzi et al. ('13)], [Ellis et al. ('97, '98)], [Qiu et al. ('01)], [Kulesza et al. ('01, '02)], [Berger et al. ('02, '03)], [Landry et al. ('03)], [Banfi et al. ('12)].
- Results for q_T resummation by using Soft Collinear Effective Theory methods and transverse-momentum dependent (TMD) factorization [Gao et al. ('05)], [Idilbi et al. ('05)], [Mantry, Petriello('10, '11)], [Becher et al. ('11)], [Echevarria et al. ('12, '13, '15)], [Chiu et al. ('12)], [Roger, Mulders('10)], [Collins('11)], [Collins, Rogers('13)], [D'Alesio et al. ('14)].
- Effective q_T-resummation can be obtained with Parton Shower algorithms. QCD/EW DY corrections implemented in POWHEG [Barze et al. ('12, '13)]. Results for NNLO+PS DY predictions obtained [Hoeche,Li,Prestel('14)], [Karlberg,Re,Zanderighi('14)].

$$rac{d\hat{\sigma}}{d^2\mathbf{q_T}\,dM^2\,dy\,d\Omega} = \left[d\hat{\sigma}^{(res)}
ight] + \left[d\hat{\sigma}^{(fin)}
ight];$$

$$\begin{split} &\int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ &\int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{split}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2\mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$

$$\mathcal{G}(\alpha_{\mathcal{S}},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{\mathcal{S}}\widetilde{L}) + g^{(2)}(\alpha_{\mathcal{S}}\widetilde{L}) + \frac{\alpha_{\mathcal{S}}}{\pi}g^{(3)}(\alpha_{\mathcal{S}}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Università & INFN Milano

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2\mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(lpha_S) imes \exp\left\{\mathcal{G}_{(N_1,N_2)}(lpha_S,\widetilde{L})
ight\}$ with $\widetilde{L} \equiv \log(M^2b^2+1)$

$$\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Università & INFN Milano DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$$

$$\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

LL $(\sim \alpha_{S}^{n} \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n})$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2}=e^{\pm \hat{y}}M/\sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$$

$$\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; (\sim \alpha_S^n \widetilde{L} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; (\simeq \alpha_S^n \widetilde{L} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; (\simeq \alpha_S^$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Università & INFN Milano

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$$

$$\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; \mathsf{LL$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$$

$$\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Università & INFN Milano

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} dy d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\} \quad \text{with} \quad \widetilde{L} \equiv \log(M^2b^2 + 1)$$

$$\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\widehat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

q_T resummation at full NNLL

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. up to O(α²_S)) at large q_T;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

http://pcteserver.mi.infn.it/~ferrera/dyqt.html

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani, de Florian, G.F., Grazzini ('15)]

http://pcteserver.mi.infn.it/~ferrera/dyres.html.

q_T resummation at full NNLL

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

http://pcteserver.mi.infn.it/~ferrera/dyqt.html

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions) [Catani, de Florian, G.F., Grazzini ('15)]

http://pcteserver.mi.infn.it/~ferrera/dyres.html.

q_T resummation at full NNLL

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

http://pcteserver.mi.infn.it/~ferrera/dyqt.html

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani, de Florian, G.F., Grazzini('15)]

http://pcteserver.mi.infn.it/~ferrera/dyres.html.

DYqT results: q_T spectrum of Z boson at the LHC

NLL+NLO and NNLL+NNLO bands for Z q_T spectrum at the LHC at $\sqrt{s} = 8 \ TeV$ (left) and $\sqrt{s} = 14 \ TeV$ (right).

Lower panel: ratio of the NLL+NLO and NNLL+NNLO results with respect to the NNLL+NNLO result at $\mu_F = \mu_R = Q = m_Z/2$.

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay products variables: possible to apply cuts on vector boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,G.F.,Grazzini('09)].
- Calculation implemented in the code DYRes[Catani, de Florian, G.F., Grazzini(?15)] which includes spin correlations, γ*Z interference, finite-width effects and compute distributions in form of bin histograms.
- In the large- q_T region $(q_T \sim M)$, we use a smooth switching procedure to recover the customary fixed-order result at high values of q_T $(q_T \gg M)$.

INFN

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay products variables: possible to apply cuts on vector boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,G.F.,Grazzini('09)].
- Calculation implemented in the code DYRes[Catani, de Florian, G.F., Grazzini('15)] which includes spin correlations, γ*Z interference, finite-width effects and compute distributions in form of bin histograms.
- In the large- q_T region $(q_T \sim M)$, we use a smooth switching procedure to recover the customary fixed-order result at high values of q_T $(q_T \gg M)$.

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay products variables: possible to apply cuts on vector boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,G.F.,Grazzini('09)].
- Calculation implemented in the code DYRes[Catani,de Florian,G.F., Grazzini('15)] which includes spin correlations, γ^*Z interference, finite-width effects and compute distributions in form of bin histograms.
- In the large- q_T region $(q_T \sim M)$, we use a smooth switching procedure to recover the customary fixed-order result at high values of q_T $(q_T \gg M)$.

Giancarlo Ferrera – Università & INFN Milano DYRes: Vector boson production at the LHC: qT resummation and leptonic decay

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay products variables: possible to apply cuts on vector boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,G.F.,Grazzini('09)].
- Calculation implemented in the code DYRes[Catani, de Florian, G.F., Grazzini('15)] which includes spin correlations, γ^{*}Z interference, finite-width effects and compute distributions in form of bin histograms.
- In the large- q_T region $(q_T \sim M)$, we use a smooth switching procedure to recover the customary fixed-order result at high values of q_T $(q_T \gg M)$.

Giancarlo Ferrera – Università & INFN Milano

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.
- We have included the full dependence on the decay products variables: possible to apply cuts on vector boson and decay products.
- To construct the "finite" part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,G.F.,Grazzini('09)].
- Calculation implemented in the code DYRes[Catani, de Florian, G.F., Grazzini('15)] which includes spin correlations, γ^{*}Z interference, finite-width effects and compute distributions in form of bin histograms.
- In the large-q_T region (q_T ~ M), we use a smooth switching procedure to recover the customary fixed-order result at high values of q_T (q_T ≫ M).

q_T recoil and lepton angular distribution

 ${\ensuremath{\, \bullet }}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \mathbf{\Omega}) = F(\mathbf{0}/M; M^{2}, \mathbf{\Omega}) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

DYRes: Vector boson production at the LHC: \mathbf{q}_{T} resummation and leptonic decay

q_T recoil and lepton angular distribution

 ${\ensuremath{\, \bullet }}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_T/M; M^2, \Omega) = F(\mathbf{0}/M; M^2, \Omega) + \mathcal{O}(\mathbf{q}_T/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani,de Florian,G.F.,Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

Giancarlo Ferrera – Università & INFN Milano

q_{T} recoil and lepton angular distribution

• The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a dynamical q_T -recoil of the vector boson due to soft and collinear multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \Omega) = F(\mathbf{0}/M; M^{2}, \Omega) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q}_{T}/M)$ ambiguity start at $\mathcal{O}(\alpha_{s}^{2})$ ($\mathcal{O}(\alpha_{s})$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].

This procedure is directly related to the choice of a particular (among the

q_T recoil and lepton angular distribution

 ${\ensuremath{\, \bullet }}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\mathbf{\Omega}}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\mathbf{\Omega})\;\;,\;\; ext{with}\;\;\int d\mathbf{\Omega}\;F(\mathbf{q_T}/M;\mathbf{\Omega})=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \Omega) = F(\mathbf{0}/M; M^{2}, \Omega) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

DYRes results: q_T spectrum of Z boson at the LHC

NLL+NLO and NNLL+NNLO bands for $Z/\gamma^*~q_T$ spectrum compared with CMS (left) and ATLAS (right) data.

Lower panel: ratio with respect to the NNLL+NNLO central value.

Program performances: for high statistic runs (i.e. few per mille accuracy on cross sections) on a single CPU: ~ 1day at full NLL, ~ 3days at full NNLL.

LHCP15 – St. Petersburg – 31/8/2015 9/14

INFN

DYRes results: q_T spectrum of W and ϕ^* spectrum of Z boson at the LHC

NLL+NLO and NNLL+NNLO bands for W^{\pm} q_{T} spectrum compared with ATLAS data.

Lower panel: ratio with respect to the NNLL+NNLO central value.

NLL+NLO and NNLL+NNLO bands for $Z/\gamma^*~\phi^*$ spectrum compared with ATLAS data.

Lower panel: ratio with respect to the NNLL+NNLO central value.

DYRes results: lepton kinematical distributions from W decay

Effect of q_T resummation on the transverse mass (m_T) for W^- production at the LHC. NLL+NLO and NNLL+NNLO results compared with LO, NLO and NNLO results. Lower panel: ratio between various results and NNLL+NNLO result.

DYRes results: lepton kinematical distributions from W decay

Effect of q_T resummation on lepton p_T (left) and missing p_T distribution for W^- production at the LHC. NLL+NLO and NNLL+NNLO results compared with LO, NLO and NNLO results.

Lower panel: ratio between various results and NNLL+NNLO result.

INFN

PDF uncertainties and **NP** effects

NNLL+NNLO result for Z q_T spectrum at the LHC at $\sqrt{s} = 14$ TeV. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor S_{NP} = exp{-g_{NP}b²} with 0<g_{NP}<1.2 GeV²:

 $\exp\{\mathcal{G}_N(\alpha_S,\widetilde{L})\} \rightarrow \exp\{\mathcal{G}_N(\alpha_S,\widetilde{L})\} S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects (higher-order contributions at small q_T can be mimicked by NP effects).
- NNLL+NNLO result with NP effects very close to perturbative result except for $q_T < 3 GeV$ (i.e. below the peak).

PDF uncertainties and **NP** effects

NNLL+NNLO result for Z q_T spectrum at the LHC at $\sqrt{s} = 14$ TeV. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \ S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects (higher-order contributions at small q_T can be mimicked by NP effects).
- NNLL+NNLO result with NP effects very close to perturbative result except for $q_T < 3 GeV$ (i.e. below the peak).

Giancarlo Ferrera - Università & INFN Milano

PDF uncertainties and NP effects

NNLL+NNLO result for Z q_T spectrum at the LHC at $\sqrt{s}=14~{\it TeV}~({\rm up})$

 $\sqrt{s} = 8 \ TeV$ (down). Perturbative scale dependence, PDF uncertainties and impact of NP effects normalized to central NNLL+NNLO prediction.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{\mathcal{L}})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{\mathcal{L}})\} \, \mathcal{S}_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects (higher-order contributions at small q_T can be mimicked by NP effects).
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

Giancarlo Ferrera – Università & INFN Milano

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

Giancarlo Ferrera – Università & INFN Milano

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini ('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

Giancarlo Ferrera – Università & INFN Milano

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

Giancarlo Ferrera – Università & INFN Milano

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini ('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini ('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

- Drell-Yan q_T-resummation up to NNLL+NNLO including full kinematical dependence on the vector boson and on the final state leptons implemented in the DYRes code [Catani, de Florian, G.F., Grazzini ('15)].
- Perturbative uncertainties estimated by comparing NNLL+NNLO with NLL+NLO results and by performing studies on factorization, renormalization and resummation scale dependence.
- Illustrative comparison with LHC data on Z/γ^* and $W q_T$ spectra (implementing experimental cuts): good agreement (within perturbative uncertainties) between data and NNLL+NNLO results.
- Impact of q_T resummation on other observables (ϕ^* distribution in Z/γ^* production and p_T^l , p_T^{ν} and m_T in W production)
- General procedure to treat the q_T recoil in q_T resummed calculations introduced.
- A public version of the DYRes (and DYqT) code is available: http://pcteserver.mi.infn.it/~ferrera/dyres.html http://pcteserver.mi.infn.it/~ferrera/dyqt.html

Back up slides

Giancarlo Ferrera – Università & INFN Milano

LHCP15 - St. Petersburg - 31/8/2015 15/14

DYqT results: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum compared with perturbative results.

 Uncertainty bands obtained varying μ_R, μ_F, Q independently:

 $\frac{1}{2} \leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2$

- Significant reduction of scale dependence from NLL to NNLL for all q_T.
- Good convergence of resummed results: NNLL and NLL bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The perturbative uncertainty of the NNLL results is comparable with the experimental errors.

Giancarlo Ferrera – Università & INFN Milano

DYqT results: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL, $\mu_R = \mu_F = 2Q = m_Z$.

- NNLL scale dependence is ±6% at the peak, ±5% at q_T = 10 GeV and ±12% at q_T = 50 GeV. For q_T ≥ 60 GeV the resummed result looses predictivity.
- At large values of q_T, the NLO and NNLL bands overlap.

At intermediate values of transverse momenta the scale variation bands do not overlap.

• The resummation improves the agreement of the NLO results with the data.

In the small- q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL band.

D0 data for the $Z q_T$ spectrum.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parametrized by a NP form factor
 S_{NP} = exp{-g_{NP}b²}:

$$\exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\}
ightarrow \exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\} rac{S_{NP}}{g_{NP}} \simeq 0.8 \ GeV^2 \ [Kulesza et al.('02)]$$

• With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

 $Z q_T$ spectrum at the LHC14.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parametrized by a NP form factor
 S_{NP} = exp{-g_{NP} b²}:

$$\exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\}
ightarrow \exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\} rac{S_{NP}}{g_{NP}} \simeq 0.8 \ GeV^2 \ [Kulesza et al.('02)]$$

• With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

DYRes: Vector boson production at the LHC: \mathbf{a}_{τ} resummation and leptonic decay

CMS data for the $Z q_T$ spectrum.

DYRes: Vector boson production at the LHC: \mathbf{a}_{τ} resummation and leptonic decay

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parametrized by a NP form factor
 S_{NP} = exp{-g_{NP}b²}:

$$\exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\}
ightarrow \exp\{\mathcal{G}_N(lpha_S,\widetilde{L})\} rac{S_{NP}}{g_{NP}} \simeq 0.8 \ GeV^2 \ [Kulesza et al.('02)]$$

• With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

 $p+p \rightarrow Z0 \rightarrow I1+I2+X, \sqrt{S} = 7 \text{ TeV}$ Data/Theory 1.3 7 Combined ee+uu CT10 NNLO kc1 Scale parameter dependence Data/Theory x2/Npt=1.13 1.1 0.9 0.8 0.7 ^{10²}Q₊ (GeV) 10

ATLAS ('11) data for the Z q_T spectrum compared with ResBos predictions with a Non Perturbative smearing parameter $g_{NP} = 1.1 \text{ GeV}^2$ [Guzzi,Nadolsky,Wang('13)]. $pp \rightarrow Z^0/\gamma^* + X \rightarrow e^+e^-/\mu^+\mu^- + X$, $\sqrt{s}=7$ TeV, MSTW2008

ATLAS ('11) data for the Z q_T spectrum compared with DYRes predictions without Non Perturbative smearing ($g_{NP} = 0$).

W/Z ratio: the q_T spectrum

DYqT resummed predictions for the ratio of W/Z normalized q_T spectra.

- The use of the *W*/*Z* ratio observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Resummed perturbative prediction for

$$\frac{\frac{1}{\sigma_W}\frac{d\sigma_W}{dq_T}}{\frac{1}{\sigma_Z}\frac{d\sigma_Z}{dq_T}}(\mu_R,\mu_F,Q)$$

with the customary scale variation.

- NNLL perturbative uncertainty band very small: 2-5% for 1 < q_T < 2 GeV, 1.5-2% for 2 < q_T < 30 GeV.
- Non perturbative effects within 1% for 1.5 < q_T < 5 GeV and negligible for q_T > 5 GeV.

Giancarlo Ferrera - Università & INFN Milano

LHCP15 – St. Petersburg – 31/8/2015 20/14

q_T resummation formalism

Main distinctive features of the formalism [Catani, de Florian, Grazzini('01)], [Bozzi,Catani, de Florian, Grazzini('06,'08)]:

- Resummation performed at partonic level: PDF evaluated at μ_F ~ M: no PDF extrapolation in the non perturbative region, customary study of μ_R and μ_F dependence.
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

- No need for non perturbative models: Landau singularity of α_S regularized using Minimal Prescription [Laenen, Sterman, Vogelsang('00)], [Catani et al.('96)].
- Resummed effects exponentiated in a universal Sudakov form factor G_N(α_S, L); process-dependence factorized in the hard scattering coefficient H_N(α_S).
- Perturbative unitarity constraint:

$$\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2 + 1) \quad \Rightarrow \quad \exp\left\{\mathcal{G}_N(\alpha_S, \widetilde{L})\right\}\Big|_{b=0} = 1 \quad \Rightarrow \quad \int_0^\infty dq_T^2\left(\frac{d\widehat{\sigma}}{dq_T^2}\right) = \widehat{\sigma}^{(tot)};$$

- avoids unjustified higher-order contributions in the small-*b* region.
- recover *exactly* the total cross-section (upon integration on q_T)

Transverse-momentum resummation formula

$$h_{1}(p_{1}) = f_{a_{1}/h_{1}} = f_{a_{1}$$

Giancarlo Ferrera – Università & INFN Milano

Soft gluon exponentiation

Sudakov resummation feasible when: dynamics AND kinematics factorize \Rightarrow exponentiation.

 Dynamics factorization: general propriety of QCD matrix element for soft emissions.
 1 n

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \mathbf{q}_{\mathsf{T}} \, \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}}) \, \delta\left(\mathbf{q}_{\mathsf{T}} - \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}\right) = \exp(-i\mathbf{b} \cdot \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}) = \prod_{j=1}^n \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}_j}).$$

• Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.

Giancarlo Ferrera – Università & INFN Milano DYRes: Vector boson production at the LHC: qT resummation and leptonic decay