Selected topics from angular distributions in ttbar events

Cecilia E. Gerber

University of Illinois at Chicago (on behalf of the ATLAS and CMS Collaborations)

3rd Annual Large Hadron Collider Physics Conference

St. Petersburg, Russia, August 31 – September 5, 2015

Introduction

- Top quark is special in the Standard Model:
 - VERY heavy
 - Decays before hadronization we study bare quark
- Probe of new physics beyond electroweak scale
 - Production top can be produced in decays of new particles (incl. virtual)
 - Decay top can decay into new particles
- LHC is a top factory

Top quark pairs per hour at peak luminosity

Measuring top properties

This talk is focused on top pair production

Production:

- Charge Asymmetry
- Color flow
- t-tbar Spin Correlation

Decay:

- Branching ratios
- W polarization in top decays

Other measurements:

- Top mass & production (ttbar and single top), BSM Searches

Charge Asymmetry

-NLO effect originating from interference of q-qbar diagrams producing top pairs - Can be largely enhanced by new physics, such as W' or axigluon models

Tevatron (p-pbar machine) top quarks are preferentially emitted in the direction of the incoming quark, anti-tops in the direction of the incoming anti-quark.

LHC has symmetric initial state (pp):

- Quarks are mostly valence and antiquarks are from the sea
- The PDF's are not symmetric quarks carry more momentum than anti-quarks
- Rapidity distribution of tops is broader

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)}$$

A_c in lepton + jets events

- Full 8 TeV CMS dataset (~19.7 fb⁻¹)
- One lepton (e or μ), $\geq 4j$, $\geq 1b$ -tag
- ttbar association based on likelihood
- Unfolded to parton level

Differential distributions (in m_{tt}, y_{tt}, p^T_{tt}) sensitive to BSM physics

Full phase space Theoretical prediction [Kühn, Rodrigo] [9] Theoretical prediction [Bernreuther, Si] [39] $0.0010 \pm 0.0068 \text{ (stat.)} \pm 0.0037 \text{ (syst.)} \\ 0.0102 \pm 0.0005 \\ 0.0111 \pm 0.0004$

Submitted to PLB arXiv:1507.03119

A_c (I+jets) - Template Method

- 8TeV data, looser cuts, larger sample
- Two-stage maximum-likelihood fit used sequentially for sample composition and A_{c.}
- Two templates for different initial states constructed from POWHEG with CT10 PDFs
- Template fit to bounded sensitive variable $\Upsilon_{t\bar{t}} = \tanh \Delta |y_{t\bar{t}}|$
- Alternative to unfolding: fit data to linear combination of symmetric and anti-symmetric templates at reconstruction level

 $\Upsilon_{t\bar{t}}$

Significantly smaller statistical uncertainties with slightly larger model dependence than traditional unfolding methods

A_C (l+jets) - Template Method

A_C (I+jets) – Brand New from ATLAS

- 8 TeV ATLAS dataset (20.3 fb⁻¹)
- One lepton (electron or muon), at least 4 jets
- ttbar association based on likelihood
- Measurement performed in 18 channels based on lepton charge, number of b-jets (o, 1 ≥2), and rapidity bins
- Simultaneous Bayesian unfolding and in-situ W+jets calibration
- Main uncertainty is data statistics, followed by JES/JER and MC statistics

ATLAS: $A_C = 0.009 \pm 0.005$

Prediction : $A_C = 0.0111 \pm 0.0004$ PRD 86, 034026(2012)

Differential measurements as a function of the invariant mass, transverse momentum and longitudinal boost of the ttbar system compatible with SM predictions

A_C (I+jets) – Brand New from ATLAS

Large phase-space of parameters describing various BSM models is excluded

To be submitted to EPJC

Color Flow

- QCD color charge is conserved locally, i.e. it "flows" just like electric charge
- Quarks carry one color (triplet)
- Gluons carry a color and an anti-color (octet)
- Others (W, Z, H, etc.) carry no color (singlet)
- Pulling apart a color from its anti-color requires lot of energy (~1GeV/fm)
 - Described through a color string or color connection picture
- Eventually color strings "break" by pulling quarks out of the vacuum
- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons

Color Flow

 ttbar lepton+jets sample ideal for the study of color flow

- W→jj decay is pure color singlet
- Each of the two b quarks is color connected to one of the beam remnants in a color-octet pattern

Jet pull angle sensitive to color flow

$$\Delta \phi = \phi - \phi_{J_1}$$

Color flow pattern is tested comparing data to two ttbar MC models: SM and one in which the W boson is a color octet

Color Flow

- Full 8TeV ATLAS dataset (20.3fb⁻¹⁾
- One lepton (electron or muon)
- At least four jets (2 tagged as originating from b-quark)
- Large MET
- Pull angle measured using all particles and charged particles only
- Measurement unfolded for detector acceptance and resolution
- Jet pull angle presented as a normalized tt differential x-sec

Submitted to PLB arXiv:1506.05629v1

- Color octet model disfavored at the 3 SD level
- Jet pull angle useful variable in future SM measurements and BSM searches.

Spin correlations

Spins of top and anti-top are correlated in SM

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{+} d\cos\theta_{-}} = \frac{1}{4} \left(1 + \frac{\alpha_{+} P_{+}}{\alpha_{+} P_{+}} \cos\theta_{+} + \frac{\alpha_{-} P_{-}}{\alpha_{-} P_{-}} \cos\theta_{-} + \frac{A\alpha_{+} \alpha_{-} \cos\theta_{+} \cos\theta_{-}}{A\alpha_{+} \alpha_{-} \cos\theta_{-}} \right)$$

- Top lifetime < hadronization timescale < spin decorrelation timescale
 - Top quarks decay before their spins decorrelate
 - Spin correlation propagated to the decay products
 - Precise measurement gives information on the strength of the SM couplings and relative contribution of production modes of ttbar pairs
- Spin correlation strength

$$A = \frac{(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}) - (N_{\uparrow\downarrow} + N_{\downarrow\uparrow})}{(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}) + (N_{\uparrow\downarrow} + N_{\downarrow\uparrow})}$$

Asymmetry between the number of ttbar pairs with aligned and anti-aligned spins

- Use a ME method with separate matrix elements for the correlated SM and uncorrelated cases
 - Calculate likelihoods for each event under the two hypotheses
 - Test statistics based on the ratio $\lambda_{\text{event}} = P(H_{\text{uncor}})/P(H_{\text{cor}})$

Spin correlations

- Full 8TeV CMS dataset (19.7fb⁻¹)
- One muon
- At least four jets (2 tagged as originating from b-quark)

•	Kinematic fitter to reconstruct
	ttbar pairs (W mass, m _{top} =m _{antitop})

Keep only events with χ²/dof<5

Yield
722 ± 20
139 ± 18
41 ± 3
314 ± 10
935 ± 20
3896 ± 24
31992 ± 69
38039 ± 81
37775

Test statistics compared with correlated and uncorrelated simulations

Spin correlations

 Fraction of events with SM spin correlation from template fit to -2lnλ_{event}

$$f = 0.72 \pm 0.09(stat)^{+0.15}_{-0.13}(syst)$$

 Compatibility test using sample with measured SM fraction

- Data agree with SM hypothesis within
 2.2SD and with uncorrelated hypothesis within
 2.9SD
- ATLAS dilepton also agrees with SM within 2 SD - PRL 114, 142001 (2015)

Conclusions:

- Top quark is truly a unique particle in the SM
 - Measurements of its production and decay properties allow for precision tests of the SM as well as indirect window to the BSM world
- ATLAS and CMS have a very rich program of top properties:
 - Presented new results on Charge Asymmetry, Color Flow and Spin correlations
 - Results are most precise to-date and use new/alternative methods
- LHC Run-II started. Most of the analyses will benefit from larger datasets, some will also benefit from higher energy.
- Stay tuned for updates