INCLUSIVE SEARCHES FOR SQUARK AND GLUINOS AT CMS

The 3rd Annual Large Hadron Collider Physics Conference

Bruno Casal Laraña

ETH Zürich

on behalf of the CMS collaboration

Санкт-Петербург (St. Petersburg) August 31 - September 5, 2015

ETH zürich

- High gluino/squark production cross-section due to strong coupling to incoming pp
- Heavy sparticles decaying to SM particles
 - Long decay chains with large visible momenta
 - Hadronic decays contributing with higher branching ratio, but leptons possible

- Under R-parity conservation, the Lightest SUSY Particle (LSP) is stable
 - Large missing momenta (E_T^{miss})
 - Natural Dark Matter candidate
- SUSY mass hierarchy unknown \rightarrow inclusive searches aiming for large sensitivity to a wide variety of signatures
 - inclusive selections
 - with fine categorization of events

• Selected set of results using $\sqrt{s} = 8 \text{ TeV}$

<u>SUS-13-012</u>	Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \sqrt{s} = 8 TeV	JHEP 06 (2014) 055
<u>SUS-12-024</u>	Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV	PLB 725 (2013) 243-270
<u>SUS-12-028</u>	Search for supersymmetry in hadronic final states with missing transverse energy using the variables α_T and b-quark multiplicity in pp collisions at \sqrt{s} = 8 TeV	EPJC 73 (2013) 2568
<u>SUS-13-019</u>	Searches for supersymmetry using the $M_{ m T2}$ variable in hadronic events produced in pp collisions at 8 TeV	JHEP 05 (2015) 078
<u>SUS-13-004</u>	Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \sqrt{s} = 8 TeV	PRD 91 (2015) 052018
<u>SUS-13-007</u>	Search for supersymmetry in pp collisions at \sqrt{s} = 8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets	PLB 733 (2014) 328-353

* http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html

Selected set of commissioning plots from the first 13 TeV data

HT + MHT SEARCH (SUS-13-012)

"Classical approach" based on multiple search bins in HT and MHT

- *H*_T = ∑_{jets} |*p*_T| → visible energy scale
- *H*_T = | − ∑_{jets} *p*_T | → invisible energy scale

SELECTION

- Trigger: HLT_HT350_MET100
- At least 3 jets, *p*_T > 50 GeV, |η| < 2.5
- *H*_T > 500 GeV
- *H*_T > 200 GeV
- Veto isolated e/μ, p_T > 10 GeV
- Δφ(H_T, jet) > 0.5, 0.3, 0.3

Methods based on control data to predict bkgs:

- µ+jets to estimate top and W+jets bkgs
- γ +jets to estimate irreducible $Z \rightarrow \nu \bar{\nu}$
- "rebalance and smear" method to estimate QCD multijet

HT + MHT RESULTS

36 search regions categorized in N_i , H_T and H_T

- *N_j*: 3-5, 6-7, ≥ 8
- *H_T* [GeV]: 500-800, 800-1000, 1000-1250, 1250-1500, >1500
- *H*_T [GeV]: 200-300, 300-450, 450-600, >600 (merge bins at higher *N_j*, *H*_T regions)
- Data consistent with SM background predictions

Bruno Casal (ETH)

LHCP15 • 01/09/2015 5 / 25

HT + MET + B-JETS SEARCH (SUS-12-024)

Similar search strategy to previous analysis using MET and b-jets

- \geq 3 jets, p_T > 50 GeV, two leading with p_T > 70 GeV
- *H_T* > 400 GeV
- *E*_T^{miss} > 125 GeV
- no electron, muon, isolated charged-particle track, *ρ*_T > 10, 10, 15 GeV
- at least one b-tagged jet, *p*_T > 50 GeV,
- normalized $\Delta \hat{\phi}_{\min} > 4.0$

- Data control regions to predict backgrounds:
 - single lepton control sample to estimate top and W+jets bkgs
 - $Z \rightarrow e^+ e^- (\mu^+ \mu^-)$ control sample to estimate $Z \rightarrow \nu \bar{\nu}$
 - low $\Delta \hat{\phi}_{\min}$ control sample to estimate QCD
- Categorize search regions in N_b, H_T, E_T^{miss}

Bin	H _T (GeV)	E _T ^{miss} (GeV)
1	400 - 500 (HT1)	125 – 150 (MET1)
2	500 – 800 (HT2)	150 – 250 (MET2)
3	800 - 1000 (HT3)	250 – 350 (MET3)
4	> 1000 (HT4)	> 350 (MET4)

α_T Search (SUS-12-028)

 α_{T} variable designed for a strong suppression of QCD

$$\alpha_T = \frac{E_T^2}{M_T^{dijet}} = \frac{1}{2} \times \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - H_T^2}}$$

- perfectly balance dijet system $\alpha_T = 0.5$
- imbalanced back-to-back configuration $\alpha_T < 0.5$
- for multi-jet events, jets are merged into two pseudo-jets

- Trigger: H_T - α_T dedicated triggers
- At least 2 jets with $p_T > 100$ GeV, $|\eta| < 3.0$
- *H_T* > 275 GeV
- $\alpha_T > 0.55$
- Veto isolated electron/muon (photon) with $p_T > 10(25) \text{ GeV}$

- Signal regions categorized in bins of N_j, N_b and H_T
 - jet multiplicity: $2-3, \ge 4$
 - b-tag: 0, 1, 2, 3, ≥ 4 b-jets
 - HT bins: 275-325-375-475-575-675-775-875-

α_T **R**ESULTS

- Backgrounds estimated with transfer factors using data control regions:
 - μ + jets

•
$$Z
ightarrow \mu \mu$$
 + jets

- γ + jets
- Data consistent with SM background predictions

*M*₇₂ Search (SUS-13-019)

• *M*_{T2} is a generalization of the transverse mass for decay chains with two unobserved particles

$$M_{T2} = \min_{\substack{p_T^{\chi(1)} + p_T^{\chi(2)} = p_T^{\text{miss}}} \left[\max\left(m_T^{\text{vis}(1)}, m_T^{\text{vis}(2)} \right) \right]$$

- multijet events divided into 2 pseudo-jets associated to two visible systems
- *M*_{T2} sensitive to genuine *E*^{miss}_T
- QCD highly suppressed by M_{T2}

SELECTION

- Triggers: H_T -only and $H_T + E_T^{\text{miss}}$
- \geq 2 jets, p_T > 40 GeV, $|\eta|$ < 2.4
- *H_T* > 450 GeV
- *M*_{T2} > 100 200 GeV
- veto e/μ/τ, p_T > 10, 10, 20 GeV
- $\Delta \phi_{min}(E_T, jet_{1,2,3,4}) > 0.3$, jet $|\eta| < 5.0$

- Backgrounds estimated from data control regions
 - e/µ/tau+jets to estimate top and W+jets bkgs
 - γ +jets to estimate irreducible $Z \rightarrow \nu \bar{\nu}$
 - low $\Delta \phi_{min}$ to estimate QCD multijet
- Bonus: optimized search and interpretation for Higgs in SUSY cascades

M_{T2} results

- Search regions categorized in bins of N_j, N_b, H_T, M_{T2}
- Data consistent with SM background predictions

RAZOR SEARCH (SUS-13-004)

• Razor variables computed from pseudo-jets assuming pair-produced new physics

$$\begin{split} M_{R} &\equiv \sqrt{(E_{j_{1}}+E_{j_{2}})^{2}-(p_{z}^{j_{1}}+p_{z}^{j_{2}})^{2}} \\ \\ M_{T}^{R} &\equiv \sqrt{\frac{E_{T}^{miss}(p_{T}^{j_{1}}+p_{T}^{j_{2}})-\vec{E}_{T}^{miss}.(\vec{p}_{T}^{j_{1}}+\vec{p}_{T}^{j_{2}})}{2} \end{split}$$

- R²: invisible energy scale
- M_R : mass scale, peaks at $\frac{M_{\tilde{q}}^2 M_{\tilde{\chi}}^2}{M_{\tilde{a}}}$
- 2d analytical shape is fit in bkg-enriched sideband and extrapolated to signal region

SELECTION

- Trigger: Razor-specific triggers
- At least 2 jets with $p_T >$ 80 GeV, $|\eta| <$ 2.4
- At least 1 b-tagged jet
- M_R/R^2 (>300-400GeV/0.15-0.25) driven by trigger
- Categorize events in orthogonal "boxes" based on jet and b-jet multiplicities, and lepton content

 $R \equiv$

SINGLE LEPTON SEARCH (SUS-13-007)

- Gluino decaying to 3rd generation squark has high probability to contain leptons and b-quarks
- Selection
 - Trigger: lepton15+HT350+MET45
 - One isolated electron/muon, $p_T > 25$ GeV, $|\eta| < 2.5/2.4$
 - *H_T* > 400 GeV
 - N_j ≥ 6, N_b ≥ 2
- Two complementary search approaches
 - 1 $E_T + H_T$ search
 - Two background estimation techniques: lepton spectrum (LS) and ∉_T template (MS)
 - 2 $S_T^{\text{lep}} + \Delta \phi(W, \ell)$ search
 - S_T^{lep} : scalar sum of \mathbb{E}_T and lepton p_T
 - Δφ(W, ℓ): azimuthal angle between W and lepton. Highly suppresses top bkg

- · Interpretation of the results in
 - Simplified Model Spectra
 - 2 cMSSM/mSUGRA plane

GLUINO PRODUCTION

- Gluino pair production
- Probe gluino masses up to ~1.3 TeV

GLUINO PRODUCTION

- Gluino mediated stop production
- Most stringent limits from single lepton analysis
- Probe gluino masses up to \sim 1.3 TeV

GLUINO PRODUCTION

- Gluino mediated sbottom production
- Probe gluino masses up to ~1.35 TeV

DIRECT SQUARK PRODUCTION

- Direct squark production assuming two scenarios
- First 2 generations of squarks are degenerate and light
 - Probe squark masses up to ${\sim}900~{\rm GeV}$
- One single light-flavour squark is accesible
 - Probe squark mass up to ~575 GeV

• Probe gluino masses up to \sim 1.2 TeV, and squark masses up to \sim 1.5 TeV

Commissioning of key SUSY observables with the first 13 TeV data

* more in Lara's talk in this session

 full collection of SUSY commissioning plots at CMS-DP-2015-035 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Commissioning_results_with_2015

TRIGGER EFFICIENCIES

Trigger efficiencies

HT800 trigger provides common sample for high mass hadronic gluino search HT350_MET100 trigger targets lower mass, e.g., compressed models

Left: Efficiency of the $H_T > 800 \text{ GeV}$ trigger measured as a function of the H_T calculated offline using jets with $p_T > 40 \text{ GeV}$ and $|\eta| < 3$, as done in the High Level Trigger. Right: Efficiency of the H_T leg of the HT350_MET100 trigger. The shaded histogram corresponds to the numerator in the efficiency calculation, and the dashed line to the denominator. 2

TRIGGER EFFICIENCIES

Trigger efficiencies

HT800 trigger provides common sample for high mass hadronic gluino search HT350_MET100 trigger targets lower mass, e.g., compressed models

Measure rates and efficiencies with 50 ns data.

Left: Efficiency of the HT350_MET100 trigger measured as a function of $E_{\rm T}^{\rm miss}$. Right: Efficiency for the same trigger vs $H_{\rm T}^{\rm miss}$, where we require $H_{\rm T}^{\rm miss}$ and $E_{\rm T}^{\rm miss}$ to be loosely compatible with $0.5 < H_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss} < 2$. The shaded histogram corresponds to the numerator in the efficiency calculation, and the dashed line to the denominator.

HT + MHT

All-hadronic search in \mathbf{H}_{T} and \mathbf{H}_{T}^{miss}

SUS-13-012/12-024

Inclusive search at high H_T and H_T^{miss} in bins of N_i and N_b .

An important background is W or top with missed leptons. Measure this bkgd in single μ control sample, as a function of kinematics. Measure the hard-to-model W p_T and use well known W decay properties from MC.

Left: Comparison of H_T^{nuss} in data and (normalized) MC using a single μ control sample selected with baseline requirements (4 jets, $H_T > 500$, $H_T^{\text{miss}} > 200$). Right: Comparison of $p_T(W)$ in single lepton (e, μ ; $p_T > 10$) events with baseline selection, $E_T^{\text{miss}} > 200$ and $M_T < 100$. 6

All-hadronic search using $\boldsymbol{M}_{\text{T2}}$

Inclusive search with M_{T2} in bins of H_T , N_j and N_b .

 M_{T2} = sTransverse mass, designed for final states with 2 missing particles

Another important background is $Z \rightarrow VV$. Estimate with photon sample, multiplied by Z/γ ratio. Check modeling of MT2 variable in $Z \rightarrow \ell\ell$ and γ samples.

Comparison of M_{T2} distribution in data and (normalized) MC for photon (left) and $Z \rightarrow \ell^+ \ell^-$ (right) control regions, where the M_{T2} calculation treats γ and Z candidates as invisible. 11

Inclusive search with α_{T} in bins of H_{T} , H_{T}^{miss} , N_{i} and N_{b} .

AlphaT is a QCD killer, leaving a top and EWK dominated background.

The α_T distribution measured in data with a loose $N_{\text{jets}} \ge 2$ and $H_T > 300$ selection. Events with $\alpha_T < 0.55$ are collected with a suite of prescaled- H_T triggers which utilise low H_T thresholds. Values of $\alpha_T > 0.55$ are measured from the H_T - α_T signal triggers with a full analysis selection applied. The data yields are corrected for the prescale of the triggers, and MC is normalizad.

Bruno Casal (ETH)

 α_T

- SUSY searches are of crucial importance in the CMS physics program
- Squark and gluino production via strong interaction have highest chances for an early discovery
- CMS has ample coverage of inclusive searches
- Results from 8 TeV data show no evidence for new physics so far
 - Stringent constraints have been set in many SUSY scenarios
- Inclusive SUSY analysis at CMS have shown readiness from the 50ns data at 13 TeV
- CMS eager to analyze 25 ns data at 13 TeV