Searches for third generation squarks

Lara Lloret Iglesias

LHCP2015

31 Aug-5 Sep 2015, Saint Petersburg

Motivation: third generation

- ✓ There is a large effort in searches for third generation squarks.
- ✓ They contribute in Higgs boson mass loop corrections.
- ✓ Naturalness of Higgs mass requires top squarks (stops) to be light.
- 3rd generation squarks may be accessible at LHC
- ✓ When R-parity is conserved, the number of SUSY particles must be preserved in the decay (assumed in this talk)
- ✓ Simplest squark decay signature: direct decay of squark to quark + LSP
 - Lightest supersymmetric particle (LSP) cannot decay
 - Provides nice dark matter candidate
 - In this talk, the LSP is always the lightest neutralino

Third generation searches

- If gluino mass accessible at 8 TeV then one can search for gluino mediated sbottom/stop pair production. Final state rich in b-jets and tops (large Missing ET and numbers of jets)

- If gluino mass not accessible at 8 TeV then one can search for direct sbottom/stop pair production. Final state typically ttbar + Missing ET or bbar + MissingET → Reach of this talk

Direct production

✓ Direct squark pair production by gg fusion or qq annihilation

- **✓** Cross-section rapidly falls with mass
- ~100 events expected in 8 TeV dataset for 700 GeV squarks
- \checkmark Cross-section of squark pairs is ~1/6 of quark pairs with same mass (e.g. ttbar)

Direct squark pair production

- All hadronic MVA
- Monojet
- One lepton
 - Combined with 0 lepton razor

- 1) Clustering jets with the Cambridge/Aachen algorithm with distance metric R=1 (fat jets)
- 2) Each fat jet is then considered for division into a pair of subjets
- 3) MVA 'picky' metric is then used to determine if it is more appropriate to associate the particles with the two subjets than with the fat jet

CORRAL top pair reconstruction:

- Identify "top candidates": three jet combinations containing at least one seed (highest pt jets in the event)
- They must pass top candidate MVA
 - W and top invariant masses and the b-tagging discriminator value
- Identify "top pair candidates": pairs of top candidates group → six unique jets

- Choose best pair based on MVA

ΔR between partons differs based on top quark boost

Once the top pairs have been reconstructed: kinematics are used to discriminate signal from background

Tops from signal are collimated

Tops from signal are not angularly correlated with MET

- Four different BDTs optimized for different stop mass phase space:
 - Trained with 24 input variables: including MET, mT(b-tag, MET), jet multiplicity, CORRAL top candidate MVA value and more
- MC are corrected using data-driven scale factors for mis-modeling of lepton id efficiency, b-tagging efficiency, jet momentum, and MET

SUS-13-023

All hadronic MVA

- Models with the top squark decaying via an on-shell top quark:
 - excluded for top squark masses up to 775 GeV and for neutralino masses below 200 GeV.
- Models with an intermediate chargino are excluded in some scenarios for top squark masses up to 650 GeV.

Monojet

- For stop: dominant mode $\widetilde{t} \rightarrow c\chi^0$
- For sbottom: dominant mode $\tilde{b} \rightarrow b\chi^0_1$
- Single high p_T ISR jet recoiling against the LSP

• Main backgrounds due to Z(vv)+jets and W(lv) processes \rightarrow estimated from μ +jets data control samples

1 lepton stop MVA

Two decay modes: T2tt and T2bw (x=0.25,0.50,0.75)

Baseline selection:

$$m_{\widetilde{\chi}_1^{\pm}} = x \cdot m_{\widetilde{\mathfrak{t}}} + (1-x) \cdot m_{\widetilde{\chi}_1^0}$$

- 1 high pT isolated e/ μ : pT > 25 (30) GeV for e/ μ
- nJets ≥ 4 (30 GeV) at least one b-tagged
- MET > 100 GeV
 - ✓ Select events with MT > 120 GeV
- Several signal regions defined with a cut-based or MVA approach (~ 40 % improvement)
 - **✓** Estimate backgrounds from MC
 - Derive corrections/uncertainties in control regions

SELECTION CRITERIA	exactly 12	> 10			
0 b-tags	CR-0b: W+jets Validate W+jets M_T tail				
≥1 b-tags SIGNAL REGION		CR-2l: tt→ll CR-lt: tt→l+isolated trk/ t had Validate physics modeling and detector effects			

1 lepton stop MVA

For each control region:

- 1) Normalize MC to data in M_T peak region \rightarrow reduce uncertainties from σ (ttbar), luminosity, ...
- 2) Extrapolate to large M_T
- 3) Derive corrections and uncertainties on the "peak-to-tail" ratios

Data consistent with background prediction

→ no evidence for top-squark

1 lepton stop MVA

Limits testing top squarks masses up to 650 GeV and neutralinos masses up to 250 GeV, depending on the model

1 lepton stop MVA + 0 lepton razor

The razor variables are defined in the context of pair production of heavy particles each decaying to a visible system of particles and a weakly interacting particle.

$$M_R \equiv \sqrt{(|\vec{p}(j_1)| + |\vec{p}(j_2)|)^2 - (p_z(j_1) + p_z(j_2))^2}$$
 and $R \equiv \frac{M_T^R}{M_R}$

$$M_{T}^{R} \equiv \sqrt{rac{E_{T}^{miss}(p_{T}(j_{1})+p_{T}(j_{2}))-\vec{E}_{T}^{miss}\cdot(\vec{p}_{T}(j_{1})+\vec{p}_{T}(j_{2}))}{2}}$$

- MTR is expected to have a kinematic endpoint at the mass of the new heavy particle
- R variable is a measure of how well the missing transverse momentum is aligned with respect to the visible momentum.

Combination improves the constraint on the top-squark mass from 650 to 730 GeV

Some plots at 13 TeV

Key variables commisioning

CMS_DP2015_035

- Exactly one isolated muon with $p_{_{\rm T}} > 30$ GeV and $|\eta| < 2.1$
- Good agreement for both HT and number of jets

Key variables commisioning

CMS_DP2015_035

- Checking razor variable distributions in data and uncorrected MC in early 13 TeV data
- M_R variable in a dilepton sample with lepton pt > 25

Good agreement: DY and tt dominated

Outlook for 13 TeV

- Discovery reach in stop mass will reach to 800 GeV in a conservative scenario
- Crucial region for testing naturalness and whether SUSY has a role in Electroweak symmetry breaking
 - Naturalness prefers m_{stop}
 lighter than 700 GeV
 - Higgs mass of ~125 GeV prefers m_{stop} heavier than 300 GeV

Conclusions

- The CMS SUSY search program at 8 TeV has been produced
 - Stringent limits on many "natural" SUSY scenarios:
 - 775 GeV for stop mass
 - Compressed region (stop to charm + LSP) covered by monojet search
- Key variables for the 13 TeV have been commisioned

Stay tuned: 13 TeV can hide surprises!

Backup

Systematics source	Magnitude (%)			
b-tagging	5% - 10%			
JES	5% - 20%			
JER	< 5%			
ISR	1%-20%			
PDF	1%-15%			
Luminosity	2.6%			
CORRAL FastSim (T2tt)	1%-20%			
CORRAL dependence on PS (T2tt)	5%			
CORRAL reconstruction (T2tt)	5%			

1 lepton MVA

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$									
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5			
M _T -peak data and MC (stat.)	1.0	2.1	2.7	5.3	8.7	3.0			
$t\bar{t} \rightarrow \ell\ell \ N_{jets} \ modeling$	1.7	1.6	1.6	1.1	0.4	1.7			
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓt and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8			
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4			
$t\bar{t} \to \ell\ell$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3			
W + jets cross section	1.6	2.2	2.8	1.7	2.7	2.2			
W + jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2			
W + jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6			
$1 - \ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2			
$1 - \ell$ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1			
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7			
Total	13.4	17.1	19.3	27.8	38.4	20.2			