W Boson Mass

Oliver Stelzer-Chilton (TRIUMF) Results from the CDF and DO Collaborations

Oliver Stelzer-Chilton

TRIUMF

W Boson Mass Measurement

• Loop-level expression for the predicted W mass in terms of other known quantities:

$$m_W^2 = rac{\pi lpha_{em}}{\sqrt{2}G_F \sin^2 heta_W (1 - \Delta r)} \quad \sin heta_W^2 = 1 - rac{m_W^2}{m_Z^2}$$

- Loop-induced radiative corrections Δr dominated by
 - Running of α_{em} due to light quark loops
 - Top quark and Higgs loop

 \Rightarrow allowed indirect constraint on Higgs mass and now comparison to M_H

History of M_w Measurements

Carried out at several colliders

World average currently dominated by Tevatron

Oliver Stelzer-Chilton

Standard Model Constraints

 The direct measurement of the Higgs boson mass has provided the last missing parameter defining the electroweak sector in the SM

SM fit

fitter

New Physics Constraints from EWK Precision

- New physics that contributes to the precision electroweak observables (loop corrections to the gauge-boson self-energies) can be generally described by the S, T, U oblique parameters
- Radiative corrections due to new physics
- The S and T parameters absorb contributions to the neutral and to the difference between neutral and charged weak currents, respectively.

M_w Measurements

Use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events to derive recoil model

0	liver S	telzer-	Chilton

Lepton Energy Scale

CDF Momentum Scale

"Back bone" of CDF analysis is track p_T measurement in drift chamber (COT) Calibrate momentum scale using samples of dimuon resonances (J/ψ , Y, Z)

Oliver Stelzer-Chilton

CDF Energy Scale

Transfer momentum calibration to calorimeter using E/p distribution of electrons from W decay by fitting peak of E/p

Oliver Stelzer-Chilton

D0 Energy Scale

Measured in luminosity and energy bins

Consistent with PDG by construction D0 is measuring M_w/M_z

CDF Z Boson Masses

- Perform blinded measurement of Z mass using derived scales from independent samples
- Comparison to PDG value is a powerful cross-check of the calibration
- After unblinding, M_z added as further calibration to both p- and E-scales

Include $Z \rightarrow II$ masses for final momentum scale and energy scale

Hadronic Recoil

Recoil definition:

- → Energy vector sum over all calorimeter towers, excluding:
 - lepton towers

- Measured recoil:
 - hard recoil from initial state QCD in W/Z event
 - underlying event/spectator interaction energy
- Calibrate detector response and resolution using Z and minimum-bias data
- Validate using measured recoil in W events

Recoil Response

Similar calibration samples and procedures between DO and CDF

Typically only detect 50-70% of "true" QCD readiation

Signal Simulation

Generator-level input for W&Z simulation provided by RESBOS [Balazs *et.al.* PRD56, 5558 (1997)]

Custom fast simulation makes smooth, high statistics templates

Extract the W mass from fit to: m_T , p_T and E_T^{miss} distributions in muon and electron decay channel

Transverse mass fits

Uncertainty	D0	CDF	Laraely stat.
Lepton energy scale/resn/modelling	17	7	in origin
Hadronic recoil energy scale and resolution	5	6	10 MeV
Backgrounds	2	3	Largely theory
Parton distributions	11	10	in origin
QED radiation	7	4 -	
$p_T(W)$ model	2	5	IZ WEV
Total systematic uncertainty	22	15	
W-boson statistics	13	12	
Total uncertainty	26 MeV	19 MeV	

World Average

Oliver Stelzer-Chilton

Mass of the W Boson

TRIUMF

Tevatron Run-II has halved the Mw uncertainty

Going Below 15 MeV at the Tevatron

Going Below 15 MeV on M_W

Limited lepton acceptance produces dependence on PDFs Will likely be the limiting factor in reducing uncertainty Evaluated with CTEQ and MSTW eigenvectors

Tevatron and LHC measurements that can further constrain PDFs:

- Z boson rapidity distribution
- W boson charge asymmetry
- Z boson AFB

At LHC (unlike TeV) significant contribution from "cs" production.

Affects:

- acceptance via rapidity and kinematic cuts

- contribution to $p_T(W)$ (m_c mass)

Constraints from W and Z data will reduce uncertainty of course

Unique forward acceptance of LHCb can potentially allow for significant reduction for ATLAS and CMS through anti-correlation

arXiv:1508.06954v1

Conclusions

- Program of precision physics with W and Z bosons well established
- Tevatron currently leading precision measurements of W boson mass, 10 MeV measurement possible
- LHC, lot's of W's and Z's, systematics is key!
- Constraints on PDF's critical
- EW precision measurements in a good agreement with 125 GeV Higgs boson
- SM over-constrained constraints New Physics
- Indirect m_W uncertainty 8 MeV needs to be matched with direct measurement
- Improve indirect measurements: m_{top}, HO corrections, ...

