Higgs differential cross-sections, spin/CP measurements, rare channels at the LHC

LHCP 2015, St. Petersburg September 1, 2015

Kerstin Tackmann (DESY)
on behalf of the ATLAS, CMS, CDF
and D0 collaborations

Main Higgs boson production modes at the LHC.

Gluon fusion: 19.5 pb

Higgs tends to have low p_T

Associated production: 1.1 pb

Clear signature: reconstruct \boldsymbol{W} and \boldsymbol{Z} in leptonic and/or hadronic decays

Vector boson fusion: 1.6 pb

Distinct signature with 2 forward jets and little hadronic activity in between

Associated production with $t\bar{t}$: 0.1 pb

Tag presence of two top quarks

Predicted production cross sections given at $m_H=$ 125 GeV and $\sqrt{s}=$ 8 TeV

SM Higgs boson decays.

[Summarized by LHC Higgs cross section working group]

Predicted decay branching fractions

This talk

- ullet Property measurements from bosonic decays, $H o WW^*, ZZ^*, \gamma\gamma$
- ullet Search for rare decays, $H o Z\gamma, \mu\mu, J/\psi\gamma, \gamma^*\gamma$

Next talk by Marco Pieri will present Higgs coupling studies

Results are based on improved detector calibration, reconstruction and analysis techniques and significantly improved over initial Run1 results

Cross sections.

Almost model-independent measurements

- High-resolution channels $H \to \gamma \gamma/4\ell$
- Fiducial region defined to minimize acceptance corrections
 - Including photon, lepton and jet kinematics, and isolation (ATLAS photons and CMS leptons)
- Unfolded to particle level

Perform measurements of

- Fiducial cross sections (and extrapolate to total)
- Production kinematics sensitive to production modes, QCD effects, PDFs, ...
- Associated jet activity sensitive to production modes, QCD effects, ...
- Spin and CP sensitive quantities
- VBF sensitive quantities

Measurements still statistically limited

m.: [GeV

300 400 500 600 700 800 900 1000

Cross sections: fiducial measurements.

Fiducial σ at 7 and 8 TeV

Fiducial σ CMS (8 TeV)

$$\sigma_{
m fid} = 1.11^{+0.41}_{-0.35}({
m stat})^{+0.14}_{-0.10}({
m syst})^{+0.08}_{-0.02}({
m mod}) {
m fb}$$
 $\sigma_{
m fid}^{
m SM} = 1.15^{+0.12}_{-0.13} {
m fb}$
 $\sigma_{
m fid} = 32 \pm 10 ({
m stat}) \pm 3 ({
m syst}) {
m fb}$
 $\sigma_{
m fid}^{
m SM} = 31^{+4}_{-2} {
m fb}$
 $\sigma_{
m fid}^{
m SM} = 31^{+4}_{-2} {
m fb}$

Fiducial σ ATLAS (8 TeV)

$$egin{aligned} \sigma_{
m fid} &= 2.11^{+0.53}_{-0.47}({
m stat})^{+0.08}_{-0.08}({
m syst}) {
m \,fb} \ \sigma^{
m SM}_{
m fid} &= 1.30^{+0.13}_{-0.13} {
m \,fb} \ \end{array} egin{aligned} H
ightarrow 4\ell \ & H
ightarrow 4 \end{array} \ \sigma_{
m fid} &= 43.2 \pm 9.4({
m stat})^{+3.2}_{-2.9}({
m syst}) \pm 1.2({
m lumi}) {
m \,fb} \ & \sigma^{
m SM}_{
m fid} &= 30.5 \pm 3.3 {
m \,fb} \end{array} egin{aligned} H
ightarrow \gamma \gamma \end{array}$$

$H \to WW^* \to e\nu\mu\nu$ fiducial ggH cross section ATLAS (8 TeV)

$$\begin{split} \sigma^{ggH}_{\mathrm{fid},0j} &= 27.6^{+5.4}_{-5.3}(\mathrm{stat})^{+4.1}_{-3.9}(\mathrm{syst})\,\mathrm{fb} & \sigma^{ggH}_{\mathrm{fid},1j} &= 8.3^{+3.1}_{-3.0}(\mathrm{stat})^{+3.7}_{-3.5}(\mathrm{syst})\,\mathrm{fb} \\ \sigma^{ggH,\mathrm{SM}}_{\mathrm{fid},0j} &= 19.9 \pm 3.3\,\mathrm{fb} & \sigma^{ggH,\mathrm{SM}}_{\mathrm{fid},1j} &= 7.3 \pm 1.8\,\mathrm{fb} \end{split}$$

Cross sections: combination.

- Sacrifice some model independence for combining $H o \gamma \gamma$ and $H o 4\ell$ to gain statistical power
 - ★ Extrapolate to full photon and lepton phase space
 - ▶ Fiducial acceptance of $60\pm1\%$ $(H \rightarrow \gamma\gamma)$ and $47\pm1\%$ $(H \rightarrow 4\ell)$
 - * Assume SM branching fractions

p-values 5.5% (LHC-XS) and 9% (ADDFGHLM)

Cross sections: Higgs boson p_T .

Cross sections: Leading jet p_T .

Cross sections: ATLAS $H \rightarrow \gamma \gamma$ interpretation.

- Probe tensor structure and Higgs interactions
- Non-SM terms in effective Lagrangian describing Higgs—gauge boson interactions

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O$$
$$+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}$$

Based on 5 differential distributions:

Spin and CP tests at LHC.

- Observation of $H \to \gamma \gamma \Rightarrow$ $J \neq 1$ (Landau-Yang theorem)
- Observation of $H \to WW^*/ZZ^*$ disfavors the CP-odd hypothesis (can occur through loops)

Spin and CP tests use angular and kinematic distributions in bosonic decays

Spin and CP tests: Analyses.

$H o ZZ^*$

- Matrix-element based likelihood ratio (MELA) and BDT approaches to distinguish between different spin and parity hypotheses
- ullet Separation of $H o ZZ^*$ signal and ZZ^* background through MELA or BDT discriminant

$H o WW^*$

• Based on $m_{\ell\ell},\,m_T$ (and $p_{T,\ell\ell},\,\Delta\phi_{\ell\ell}$ in ATLAS, combined in a BDT)

$$H o \gamma \gamma$$

• Based on $\cos(\theta^*)$ (and $p_T^{\gamma\gamma}$ in ATLAS)

Only based on shape information, no use of signal rates

Spin and CP tests: Spin models. Spin-2

$$\mathcal{L}_2 = rac{1}{\Lambda} \left(\sum_V \kappa_V X^{\mu
u} T^V_{\mu
u} + \sum_f \kappa_f X^{\mu
u} T^f_{\mu
u}
ight)$$

- ullet With universal couplings $\kappa_V=\kappa_f$
 - ⋆ Disfavored by observed Higgs BFs
- ullet and non-universal couplings $\kappa_V
 eq \kappa_f$
 - \star Strong distortion of Higgs p_T
- Valid up to scale Λ
 - ⋆ ATLAS requires p_T^X < 300 GeV for non-universal coupling scenarios
- ATLAS considers also processes with emission of additional partons
- CMS considers also models with higher-order operators

Spin-0

 Testing pure (fixed hypothesis) 0⁻ and non-SM 0⁺

Spin and CP tests: Fixed hypotheses.

Combining information from $H \to ZZ^*$, $H \to WW^*$ (and $H \to \gamma\gamma$ in ATLAS)

 \bullet Testing alternative spin and CP hypotheses against SM 0^+

Alternative tested 0^{\pm} , 1^{\pm} and 2^{\pm} typically excluded at >99% CL

Spin and CP tests: CP mixing ATLAS.

SM 0^+ and BSM 0^\pm Lagrangrian:

$$\begin{split} \mathcal{L}_0^V = & \left\{\cos(\alpha)\kappa_{\text{SM}}\left[\tfrac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu} + g_{HWW}W_{\mu}^+W^{-\mu}\right] \right. \\ & \left. - \tfrac{1}{4}\tfrac{1}{\Lambda}\left[\cos(\alpha)\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}\right] \right. \\ & \left. - \tfrac{1}{2}\tfrac{1}{\Lambda}\left[\cos(\alpha)\kappa_{HWW}W_{\mu\nu}^+W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW}W_{\mu\nu}^+\tilde{W}^{-\mu\nu}\right]\right\}X_0 \end{split}$$

- Admixture of BSM 0⁺ and BSM 0⁻ tested separately
- ullet Combination under the assumption of same admixture in $H o ZZ^*$ and $H o WW^*$

Coupling ratio	Best-fit value	95% CL Exclusion Regions	
Combined	Observed	Expected	Observed
$\tilde{\kappa}_{HVV}/\kappa_{SM}$	-0.48	$(-\infty, -0.55] \cup [4.80, \infty)$	$(-\infty, -0.73] \cup [0.63, \infty)$
$(\tilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \bigcup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$

No significant admixture of non-SM CP states

Spin and CP tests: CP mixing CMS.

Anomalous couplings (compatible with Lorentz and gauge invariance)

$$\begin{split} A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* \\ + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{split}$$

Tested parameters

$$f_{a2} = \frac{|a_2|^2 \sigma_2}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots} \stackrel{=}{\underset{\sim}{=}} \frac{|a_2|^2 \sigma_2}{|a_1|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots}$$

$$\phi_{a2} = \arg\left(\frac{a_2}{a_1}\right)$$

Combination of $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ $r_{ai} = \frac{a_i^{WW}/a_1^{WW}}{a_i/a_1}$, or $R_{ai} = \frac{r_{ai}|r_{ai}|}{1+r^2}$.

Spin and CP tests at Tevatron.

VH(o bar b)

- Kinematic distributions (such as p_T^V and m_{VH}) distorted for the tested $J^P=0^-$ and 2^+ models
 - * Differential production rate at threshold $\propto \beta / \beta^3 / \beta^5$ for SM / 0⁻ / 2⁺ $(\beta = 2p^V/\sqrt{\hat{s}}, \sqrt{\hat{s}} = VH$ energy, all in VH rest frame)
- ullet Analysis based on MVA discriminant (CDF) and m_{VH} (D0)
- Best fit: SM with no exotic admixture

 $J^P=0^-~(2^+)$ excluded with 5 $\sigma~(4.9~\sigma)$ assuming SM production cross section \times BF

Rare decays: $H \rightarrow Z\gamma$.

SM: BF($H \rightarrow Z\gamma$)= 0.16%

- ullet $H o Z\gamma$ could be enhanced e.g. from new particles in the loop
 - ...although careful parameter tuning often needed to enhance expected signal beyond
 2×SM
- Low event yield due to $BR(Z \to \ell\ell) \sim 6.7\%,\, Z \to \ell\ell$ used to enhance S/B
- Signature: 2 same-flavor, opposite-sign isolated leptons $(p_T^\ell>$ 10-20 GeV, $m_{\ell\ell}\sim m_Z)$, 1 isolated photon $(p_T^\gamma>\sim$ 15 GeV)
- Categorized analysis assuming SM-like Higgs
 - Z and γ kinematics (and dijet events in CMS)

20-40% sensitivity gain from event categorization

Rare decays: $H \rightarrow Z\gamma$.

- Large backgrounds from SM $Z\gamma$ and Z+jets (S/B \sim 0.3%)
- Good $m_{\ell\ell\gamma}$ resolution, $\sigma(m_{\ell\ell\gamma})/m_{\ell\ell\gamma} \sim 1.5\%$
- ullet Signal+background fit to $m_{\ell\ell\gamma}$ spectrum

<9.5 \times SM @ 95% CL at m_H =125 GeV (expected < 10 \times SM)

<11 \times SM @ 95% CL at m_H =125.5 GeV (expected < 9 \times SM)

Rare decays: $H \rightarrow \mu \mu$.

SM: BF($H \rightarrow \mu\mu$)= 0.02%

- Clean probe of Higgs couplings to 2nd generation fermions
- Signature: 2 opposite-sign, isolated muons ($p_T^\mu >$ 25,15 GeV)
- Large background from $Z/\gamma^* \to \mu\mu$, smaller contributions from $t\bar{t},WW,...$ (S/B \sim 0.4%)
- Good $m_{\mu\mu}$ resolution $\sigma(m_{\mu\mu})/m_{\mu\mu} \sim$ 1.5-2.5%
- Categorized analysis assuming SM-like Higgs
 - \star Muon kinematics $(p_T^{\mu\mu}, |\eta^{\mu}|)$ and dijet categories (VBF)

Rare decays: $H \to \mu \mu$.

Similar search for H o ee (CMS 8 TeV data) yields BR(H o ee) <1.9×10⁻³

→ Higgs boson couplings are not flavor universal:

H
ightarrow au au decay confirmed by experiments (SM BF(H
ightarrow au au)= 6.3%)

Rare decays: $H o J/\psi\gamma$. [PRL 114 (2015)]

SM: BF($H o J/\psi \gamma$) = $2.8 imes 10^{-6}$

- Interference between large indirect production and small direct production gives access to sign of Higgs—charm coupling
 - Theoretically clean (SM BR predicted with few-% uncertainties)
- Signature: 2 opposite-sign same-flavor isolated muons $(p_T^\mu>$ 20 GeV) with $|m_{\mu\mu}-m_{J/\psi}|<$ 0.15(0.2) GeV, 1 isolated photon $(p_T^\gamma>$ 36 GeV)
- Main background from J/ψ + jet $\to \gamma$ misidentification
- Events categorized based on $|\eta^{\mu}|$ and converted/unconverted γ

• Simultaneous fit to $m_{\mu\mu\gamma}$ and $p_T^{\mu\mu\gamma}$ 6 BR $(H \to J/\psi\gamma) <$ 1.5 \times 10 $^{-3}$ @ 95% CL (540 \times SM) 0 (exp. <1.2 \times 10 $^{-3}$)

160

200

Rare decays: $H o \gamma^* \gamma o \ell \ell \gamma$.

- Non-trivial angular distributions and forward-backward asymmetry in 3-body decay $H \to \ell\ell\gamma$ allow for interesting property measurements
- Signature: 2 opposite-sign same flavor leptons $(m_{\mu\mu(ee)} <$ 20 (1.5) GeV, veto J/ψ and \Upsilon), 1 isolated photon $(p_T^\gamma > 0.3 m_{\ell\ell\gamma})$
 - $\star m_{\ell\ell}$ and p_T^γ cuts suppress $H o Z\gamma$
 - \star Select $m_{\mu\mu}$ close to J/ψ mass for $H \to J/\psi \gamma, \, p_T^{\gamma} >$ 40 GeV

$${\rm BR}(H\to\gamma^*\gamma\to\ell\ell\gamma)<7.7\times{\rm SM}\ @\ 95\%\ {\rm CL}\ ({\rm exp.}\ 6.4\times{\rm SM})$$

 $BR(H \to J/\psi \gamma) < 1.5 \times 10^{-3}$ @ 95% CL

Summary.

- Run1 dataset allowed for already quite detailed property studies of the Higgs boson, 3 years after the discovery
- Measurements of Higgs boson production and decays consistent with SM predictions within the present uncertainties
 - (Almost) model independent measurements of fiducial and differential cross section, limited by statistical uncertainties
 - \star SM $J^P=0^+$ preferred, all other tested Spin/CP fixed hypotheses strongly disfavored
 - Still room for CP mixing, limits on BSM 0⁻ and 0⁺ admixtures
 - \star Set limits on rare decays, no evidence of $H\to \mu\mu$ confirms that coupling to leptons is not flavor universal
- Run2 will allow for more detailed property measurements and ensure an exciting Higgs physics program

