Imperial College London

Searches for light exotics at LHCb

Federico Leo Redi, on behalf of the LHCb collaboration.

31 VIII 2015 LHCP-2015, Санкт-Петербург.

Outline

- LHCb can exploit its unique features to search for exotic phenomena in different ways
 - Exotic hadronic structure see Mikhail Shapkin's talk in the HF parallel session and Giovanni Veneziano's "Results on Rare Decays" talk.
 - Very rare decays

Introduction

CMS Experiment at LHC, CERN Data recorded: Sat Nov 17 17:23:56 2012 IST Run/Event: 207454 / 1095163126 Lumi section: 771

https://indico.cern.ch/event/386054/

The LHCb detector

 LHCb is a dedicated flavour experiment in the forward region at the LHC (1.9 < η < 4.9).

• 3.0 fb⁻¹ from Run1 at 7 and 8 TeV.

 Precise vertex reconstruction < 10 μm vertex resolution in transverse plane.

• Lifetime resolution of ~ 0.2 ps for $\tau = 100$ ps.

Muons clearly identified and triggered: 98% μ[±] efficiency.

Great mass resolution: typically 7–20 MeV.

• Low p_T trigger means low masses accessible. Ex: $p_{T\mu} > 1.5$ GeV.

VELO

Tracking

RICH

Calorimeter

Muon system

Majorana neutrinos at LHCb

- Searches for the decays of heavy mesons to final states with two same sign leptons.
 - Complementary to other searches, such as in neutrino-less double β decay (only coupling to e).
 - LHCb searches (will) constrain models like the type-I seesaw model with three right-handed neutrinos.
- Very stringent limits are possible for rare B and D decays.

- Particularly true for on- and off-shell Majorana Neutrinos in B and D decays.
- A. Phys.Rev.Lett. 112 (2014) 131802: $h^{\pm} = \pi^{\pm}$, with 3.0 fb⁻¹ (7 TeV and 8 TeV).
- B. Phys.Rev. D85 (2012) 112004: $h^{\mp} = D^{\mp}, D^{*\mp}, D_s^{\mp}$ and $D^0 \pi^{\mp}$, with ~40 pb⁻¹ (7 TeV).
- C. Phys.Rev.Lett. 108 (2012) 101601: $h^{\mp} = K^{\mp}$ or π^{\mp} , with ~36 pb⁻¹ (7 TeV).

Searches for same sign muons from B decays

- LHCb uses B[±]→π[∓]µ[±]µ[±] with 3.0 fb⁻¹ (7 TeV and 8 TeV).
- m_N window of 250 5000 MeV and lifetimes from zero to 1000 ps are probed.
- The existing experimental limits for the mixing parameter |V_{μ4}| as a function of the mass of the Majorana neutrino m₄ shows that LHCb could play a significant role in the region above 2 GeV.

Majorana neutrino at LHCb

- Split into Short (SL) (one vertex) and Long (LL) (two vertices) neutrino lifetimes. For LL the $\pi^{\mp}\mu^{\pm}$ vertex can be displaced.
- Channel is normalised to $B^+ \rightarrow J/\psi K^+$ and with charmonium backgrounds (green) estimated from data.
- The search is performed in a 2σ window around B⁺ mass using CLs method to set upper limits using a p-value of 5%.

Phys.Rev.Lett. 112 (2014) 131802

Limits

- The efficiency is highest for τ_N of a few ps, it decreases rapidly until about 200 ps when it levels off until about 1000 ps and beyond it vanishes as $\pi^{\mp}\mu^{\pm}$ vertex is outside VELO.
- The τ_N dependence is taken into account by using different efficiencies for each lifetime step.
- Limits on the fourth generation coupling $|V_{\mu 4}|^2$ as a function of neutrino mass are extracted as function of $m_{N.}$

Phys.Rev.Lett. 112 (2014) 131802

Review of results

Phys.Rev. D87 (2013) 071102

- Performs direct search for $N \to I^{\pm} \pi^{\mp}$ using $B \to IXN$ with $X = D^{(*)}$, light meson or nothing and $I = e, \mu$
- Set upper limits on both $|V_{e4}|^2$, and $|V_{\mu 4}|^2$.

Phys.Rev. D89 (2014) 011102

- Performs direct search $B \to X^{-1}''$ with $I, I' = e, \mu$.
- Limits on the ρ^- , π^- and K^- modes are an order of magnitude improvement on previous results.

Channel	$\mathcal{B}_{\mathit{UL}}(imes 10^{-7})$
$B^+ o K^{*-}e^+e^+$	4.0
$B^+ o K^{*-} e^+ \mu^+$	3.0
$B^+ o K^{*-} \mu^+ \mu^+$	5.9
$B^+ ightarrow ho^- e^+ e^+$	1.7
$B^+ ightarrow ho^- e^+ \mu^+$	4.7
$B^+ o ho^- \mu^+ \mu^+$	4.2
$B^+ ightarrow D^- e^+ e^+$	26
$B^+ o D^-e^+\mu^+$	21
$B^+ o D^- \mu^+ \mu^+$	17
$B^+ o K^-e^+\mu^+$	1.6
$B^+ \rightarrow \pi^- e^+ \mu^+$	1.5

Low mass dark boson

- Higgs discovered is so far consistent with SM Higgs boson. It could still couple to exotic particles: inflaton (LL), dark matter mediator (SL), axion-like (SL), etc.
 - LL: Long lifetime: Displaced vertex kills most of background; lower reconstruction efficiency.
 - SL: Short lifetime Prompt decay: contamination from SM. Higher reconstruction efficiency.
- The blinded analysis uses the decay signature B→K^{*}(Kπ)χ(μμ): large top-quark Yukawa coupling and fully reconstructing the B⁰.
- Dimuon vertex can be displaced from the K
 vertex.

Strategy of the search for dark bosons

- We are looking for di-muon resonance:
- Scan dimuon mass spectrum.
- Do this with a set of m_{test} in steps of 1/2 σ_m where $\sigma_m = 1$ \div 7 MeV is the dimuon mass resolution.
 - Wide resonances are safe. but narrow resonances must be vetoed.
- Test statistic performed for each m_{test}.
- A global p-value is assigned from the minimum local pvalue observed.
 - fraction of toys that have a minimum local p-value less than the observed in data.
 - Takes count of the Look Elsewhere Effect.

log(min local p-value)

Unblinded fit results

- The decay B→K*µµ is used as normalisation mode in the region 1.1<q2<6.0 GeV2. Same final state allow to cancel many systematic errors.
- Selection triggers on muons factorising lifetimes into two separate components: prompt and displaced.
- A dedicated multi variate analysis (uBDT) is used. The performance is (nearly) independent of the mass and lifetime of χ [JINST 8(2013) P12013].
- Unblinded dimuon mass (for candidates in the B mass window) shows no evidence of a dark boson.
 Local p-value of 0.02.

Limits

- · No deviation-from background is observed.
- Can set model independent limits (LHS axis) using a 95% CL upper limit as function of mass and lifetime for a new χ, in the range studied.
- · Assuming new particle is scalar we can set limits to BF (RHS axis).
- Best limits are O(10) for τ < ~10 ps. Less stringent for larger lifetime (due to loss of reconstruction efficiency). Vetoed regions are visible as before.

Review of results

- Model dependent and model independent.
 Showing here model dependent for B → X_sL, where X_s is a strange hadron (S=-1) and₊L₋ is a long-lived neutral particle decaying to f=/ l' I = (e, µ, K).
- Requirements: displaced L vertex and two body decay kinematics. No additional specific requirements on the reaction.
- Search performed by fitting L mass distribution.
- W.r.t. LHCb is more general but also larger background.
 - No attempt to set limits for $\tau_L < 30$ ps.
 - Where limits are set, LHCb is more stringent.

Conclusions

- A number of new results on searches for low mass in heavy flavour hadron decay.
- Majorana neutrino and dark bosons are most recent results, LHCb plays a key role in the game.
- World's best limits on several branching fractions, possibility to set world's best limits on fourth generation coupling in phase space above charm threshold.
- B factories continue to exploit their dataset and will come back with BELLEII, until then it is up to the LHC.
- New results from LHCb are to be expected both with new and old data.

Thanks

Federico Leo Redi

LHCb track types

Bkp \ Scan in m_N for Majorana in LHCb

- No evidence for a signal, upper limits are set by scanning across the mN window.
- At every 5 MeV step beginning at 250 MeV and ending at 5000 MeV we define a ±3σ search region, where σ ranges from approximately 3 MeV at low mass to 24 MeV at high mass.
- The fitted background is then subtracted from the event yields in each interval. The upper limit at 95% C.L. of Bf(B $\rightarrow \pi^+\mu^-\mu^-$) at each mass value is computed using the CLs method.

Limits from LHCb together with BaBar for Majorana neutrino

7		
LHCD	Channel	<i>BUL</i> 95% CL
	$B^+ o K^- \mu^+ \mu^+$	5.4×10^{-8}
	$B^+ o D^- \mu^+ \mu^+$	6.9×10^{-7}
	$B^+ o D^{*-} \mu^+ \mu^+$	2.4×10^{-6}
	$B^+ o \pi^- \mu^+ \mu^+$	4.0×10^{-9}
	$B^+ o D_s^- \mu^+ \mu^+$	5.8×10^{-7}
	$B^+ o D^0 \pi^- \mu^+ \mu^+$	1.5×10^{-6}

Production and decay of Majorana neutrino at BELLE

