

High Mass Searches for Standard Model-Like Higgs Boson at the LHC

Song-Ming Wang
On behalf of the ATLAS and CMS Experiments

LHCP 2015 St. Petersburg, Russia, August 31 – September 5, 2015

Introduction

- •ATLAS and CMS discovered a new particle m~125 GeV, with measured coupling and properties compatible with the SM Higgs boson
- •Is it the SM Higgs boson?
 - •Or is this particle part of an extended scalar sector postulated by several extensions to the SM?
- •The discovery of additional Higgs-like particles will be an unambiguous sign of NEW PHYSICS!

Electroweak Singlet Model

•Simplest extension to SM Higgs sector

•Involves addition of an EW singlet which mixes with the SM doublet state, resulting 2 CP-even Higgs bosons h and H

	h	Н
σ	$C^2 \times \sigma_{h,SM}$	C'²×σ _{H,SM}
Γ	$C^2 \times \Gamma_{h,SM}$	$(C'^2/(1-BR_{H,new}))\times\Gamma_{H,SM}$
BR_i	$BR_{h,SM,i}$	$(1-BR_{H,new}) \times BR_{H,SM,i}$

•Assume couple to fermions and vector bosons in same way as SM Higgs boson, but strength reduced by common scale factor:

- $C \rightarrow h$
- $C' \rightarrow H$
- •Unitarity constraint:
 - $C^2 + C^2 = 1$

•Free parameters:

- C, C', BR_{new}, mH
- BR_{new}: branching fraction of H to new decay modes.

Two Higgs Doublet Model (2HDM)

- •Add second EW doublet to Higgs sector
 - => five Higgs bosons

- •Higgs sector of 2HDM described by :
 - 4 Higgs masses
 - tan β : ratio of vacuum expectation values
 - mixing angle α between the two CP-even states h and H
- •Different types of 2HDM scenarios satisfy the Glashow-Weinberg condition (to avoid FCNC)
 - •Type I : One Higgs doublet couples to vector bosons and the other couples to fermions (fermiophobic)
 - •Type II: (MSSM like) one doublet couples to up-type quarks, and the other couples to down-type quarks and leptons
 - •Type III and IV are not discussed

Song-Ming Wang LHCP 2015

Overview of Searches

- •Talk focus on searches for high mass neutral Higgs (decay to vector bosons)
- •Other BSM searches in the Higgs sector at LHC:
- Experimental BSM Higgs boson status:
 - Pawel Bruckman de Renstrom
- •Searches for neutral Higgs bosons of 2HDM, MSSM and NMSSM at the LHC:
 - Matthias Schroeder

- •Searches for Charged Higgs boson at LHC
 - •Pietro Vischia
- Rare & Exotic decays of the Higgs boson at LHC
 - Yuta Takahashi
- •Search for invisible decays of Higgs boson at LHC
 - Andrew White

Decay	Final State	ATLAS	CMS
Н→үү	γγ	8 TeV (20.3 fb ⁻¹) 65 <m<sub>H<600 GeV PRL 113, 171801 (2014)</m<sub>	8 TeV (19.7 fb ⁻¹) 150 <m<sub>H<850 GeV <u>arXiv:1506.02301</u></m<sub>
	lvlv	8 TeV (20.3 fb ⁻¹) 220 <m<sub>H<1000 GeV</m<sub>	7 TeV (5.1 fb^{-1}) + 8 TeV (19.7 fb^{-1}) 145 <m<sub>H<1000 GeV</m<sub>
H→WW	lvqq	300 <m<sub>H<1500 GeV <u>HIGG-2013-19</u></m<sub>	<u>arXiv:1504.00936</u>
	1111	8 TeV (20.3 fb ⁻¹)	7 TeV (5.1 fb ⁻¹) + 8 TeV(19.7 fb ⁻¹)
H→ZZ	llvv	140 <m<sub>H<1000 GeV arXiv:1507.05930</m<sub>	145 <m<sub>H<1000 GeV arXiv:1504.00936</m<sub>
	llqq		
	vvqq		

- •Select events with two isolated photons
- •Main background:
 - di-photon continuum
 - γ+jet , di-jet (jet fakes photon)
 - Drell-Yan (γ^*/Z) (electron fakes photon)
- •Search for a mass peak over a smooth $m_{\gamma\gamma}$ spectrum
- •Fit m_{yy} spectrum with analytical description of signal and background

•ATLAS : Search for narrow resonance (Γ_X =0.09 GeV + 0.01m_X)

$H \rightarrow WW$

- •Search for high mass CP-even Higgs in the H→WW decay channel
- •Two final states are used:
- •<u>H→WW→lvlv</u>
- •Two leptons, mass m_{II} (e⁺e⁻, μ ⁺ μ ⁻), outside Z mass window
- Large MET (due to escaping neutrinos)
- •Veto events with 3rd lepton (reject WZ,ZZ) and b-tag jets (reject Top)
- •Separate events into 0,1 and \geq 2 jets
 - • \geq 2 jets events are optimized to select VBF Higgs production (large m_{ij} , $\Delta \eta_{ij}$)

H→WW

•<u>H</u>→WW→lvqq

- •At high Higgs mass, two jets from W decay can merge to form large-R jet (J)
 - •Perform search in "resolved" & "merged" channels
- •Selection:
 - •One lepton (e,μ) , some MET, veto events with extra lepton or b-tag jets
 - •Separate events into VBF or non-VBF tagged
 - •VBF: \geq 4 jets or \geq 2 jets + 1 large-R jet. Require 2 jets tagged as VBF jets
 - •Non-VBF (mostly ggF): ≥ 2 jets or 1 large-R jet (failed VBF selection)
 - •Require mass m_{ii} (resolved) or m_J (merged) consistent with W mass

- •Dominant background:
 - •W+jets
 - •Top
 - Diboson

H→WW: Results

- •CMS and ATLAS perform search in several scenarios
- •SM-Like
- •Width gets large at high mass
 - Γ~650 GeV @ mH=1 TeV
- •Account for interference between signal and nonresonance WW BG

H→WW: Results

• Narrow Width (negligible effect from interference)

•Intermediate Width

- Motivated by EW singlet model
- Assume production cross section and partial width of heavy H is related to SM Higgs by a single constant SF
- •Not considering new decay modes (BR_{new}=0)
- •Results not sensitive to width of H

11 **LHCP 2015**

$H\rightarrow ZZ$

- Perform search in various decay combinations
 - **IIII** : good mass resolution, well suited for narrow resonant search
 - *llvv*, *llqq*, *vvqq*: high branching ratio, good sensitivity at high mass

- •4 isolated leptons (l=e or μ)
 - •CMS also considers 2*l*2 τ
- •Good S/B
- m₄₁: discriminant variable
- •Dominant background:
 - Continuum ZZ, Z+jets

 $\bullet \underline{H} \rightarrow ZZ \rightarrow llvv$

LHCP 2015

- l^+l^- (l=e or μ), large MET
- •Veto events with b-tagged jet or extra lepton
- •Require high pT objects and MET well separated to suppress events where MET is mis-measured
- •Also separate events into VBF and non-VBF categories

12

$H \rightarrow ZZ$

$\bullet H \rightarrow ZZ \rightarrow llqq$

- •At high Higgs mass jets from $Z \rightarrow qq$ may merge (J : merged jet)
 - •Perform search in "resolved" & "merged" channels
- • l^+l^- (l=e or μ), m_{II} consistent with Z mass
- •Separate events into VBF, non-VBF, resolved and merged categories
- •Mass of m_{ij} , m_J be consistent with Z mass
- •Non-VBF events further classified into 0, 1, 2 b-tagged events (to improve sensitivity)
 - •b-jets occur more often in signal (~21%) than in dominant Z+jets BG (~2%)

•Dominant background: Z+jets, Top, Diboson

13

$H \rightarrow ZZ$

$\bullet H \rightarrow ZZ \rightarrow vvqq$

- •Only considered in ATLAS, has large BR, but also large background
- •No reconstructed lepton, large MET
- •Reject fake MET events to suppress multi-jet BG
- •No separation into VBF and non-VBF categories
- •Mass of m_{ii} be consistent with Z mass
- •Classify events into 0, 1, 2 b-tagged events
- •Dominant background:
 - •Z+jets, W+jets, Top, Diboson

14 Song-Ming Wang **LHCP 2015**

H→ZZ: Results

•ATLAS:

Narrow Width

•Higgs width much smaller than detector resolution

• $\sigma(4l)$ ~1.5-3.5%

- •Interference not accounted
- •Best sensitivity:
 - •Low mass: 4l
 - •High mass : *llqq* +*vvqq*

11

- •CMS: SM-Like
 - •Interference is accounted
 - •Best sensitivity:
 - •Low mass: 4*l*
 - •High mass : 2*l*2*v*

•ATLAS: 2HDM

•Chosen mH and ranges of $\tan \beta$ and $\cos(\beta-\alpha)$ are limited to region where the assumption of heavy narrow width Higgs boson with negligible interference is valid.

H→**ZZ**: Results

Combine $H\rightarrow WW + H\rightarrow ZZ$ (CMS)

SM-Like

EW Singlet

•Exclude $145 < m_H < 1000 \text{ GeV}$

•Large region of C'² vs m_H is excluded for various values of B_{new}

1000

Summary

- •CMS and ATLAS have searched for high mass Higgs boson with Run 1 data
 - •No excess is found over SM prediction
- •Run 2 data taking has just started
 - •Increased collision energy may open new doors to BSM
- •Understanding detector performances and background will be critical to searches at the new energy frontier

Back Up

Two Higgs Doublet Model (2HDM)

- Different types of 2HDM scenarios satisfy the Glashow-Weinberg condition (to be absence of FCNC)
 - •Type I : One Higgs doublet couples to vector bosons and the other couples to fermions (fermiophobic)
 - •Type II: (MSSM like) one doublet couples to up-type quarks, and the other couples to down-type quarks and leptons
 - •Type III : (lepton-specific) quarks couple to one doublet and leptons to the other
 - •Type IV : ("flipped") up-type quarks and leptons couple to one doublet and down-type quarks couple to the other

•CMS: Limits on narrow width resonance decaying into two photons

•CMS: Limits on width vs mass mH

•CMS : interpret results in 2HDM Type I model in A→γγ

•Region below curves are excluded

H→WW: Results

•ATLAS: SM-Like

H→WW: Results

•ATLAS: Narrow Width

H→WW, ZZ: Results

•CMS : Electroweak Singlet Extension

Song-Ming Wang

LHCP 2015

H→ZZ: Results

--- Expected Median

H→ZZ: Results

H→WW: Results

- •CMS and ATLAS perform search in several scenarios
- •SM-Like
- •Width gets large at high mass
 - Γ~650 GeV @ mH=1 TeV
- •Account for interference between signal and nonresonance WW BG

29

