

Ivan Pozdnyakov, CMS, Institute of Theoretical and Experimental Physics (ITEP), Moscow

Motivation:

✓ Hard parton interactions ($\frac{\sqrt{s}}{2} \sim k_T > \Lambda_{QCD}$) are described by DGLAP evolution equations

• With increased collision energy semihard parton interaction ($\frac{\sqrt{S}}{2} \gg k_T > \Lambda_{QCB}$) effects became significant, which are described by BFKL evolution equations ✓ BFKL contributions are enhanced by $(\alpha_s \Delta y)^n$ Parton cascade is spanned over large rapidity interval

✓ Jets with large rapidity separation provide a sensitive probe for effects beyond DGLAP description

<u>Results (preliminary) with NEW predictions (data points were published at CMS-PAS-FSQ-12-002, CMS Collaboration):</u>

AO and MPI study

Conclusions:

• Azimuthal decorrelation of MN dijets as a function of rapidity separation is measured for the first time up to $\Delta y = 9.4$ ✓ Azimuthal decorrelation is sensitive to the details of QCD radiation implemented in different MC generators and their tunes • The observed sensitivity to the implementation of the colour-coherence effects in the DGLAP MC generators and a reasonable description by the NLL BFKL analytical calculations at large Δy may be considered as an indication that the kinematical domain of the present study lies in between the regions described by the DGLAP and BFKL approaches