Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LHC). LHCP2015

Otman Charaf

University of Alabama

September 1st 2015

э

Otman Charaf (University of Alabama) Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LHC).

Theoretical motivation

- The Higgs boson discovery brought the last piece of the Standard Model (SM)
- But many extensions of the SM could manifest at higher energies \to new resonances at the TeV scale \to probe at the LHC

Models

- A myriad of models probed by both ATLAS and CMS experiments, in almost every channel
- Extra dimensions: additional spatial dimensions of finite size to address the hierarchy mass problem \to series of Kaluza-Klein excitations
 - Randall-Sundrum scenario: only one extra dimension with warped geometry \rightarrow massive excitations of the graviton

イボト イラト イラト

- Two parameters: the coupling $c = k/M_{Pl}$ and mass of the first excitation M
- Grand unification: new gauge bosons: Z'_{SSM} (benchmark model), $Z'_{\psi},\, Z'_{\chi},\, Z^*$

Experimental searches

- Essentially looking for a peak over the background in the invariant mass distribution.
- Try to be as model independent as possible
- Diphoton channel very clean and good branching ratio for dilepton
- Mostly 8 TeV results

-

ATLAS and CMS

- Excellent energy resolution for both electromagnetic calorimeters
- ATLAS: longitudinal segmentation \rightarrow e/ π discrimination
- CMS: overall better tracking resolution

- Models: Randall-Sundrum, Sequential Standard Model, Z'_{ψ} , Z'_{χ} , Z^*
- Main backgrounds: irreducible Drell-Yan, $t\bar{t}$, QCD
- Lepton selection: shower shape + isolation
- Background estimation
 - Drell-Yan, *tī* and VV from Monte-Carlo
 - QCD multijets from fake rate method (matrix inversion)
 - Total background normalized to yields in 80-110 GeV region

Statistical interpretation

Otman Cl

- Binned likelihood ratio
- Parameter of interest: $\sigma \times B$ if no interference effects included, coupling strength otherwise.

araf (University of Alabama)	Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LH
------------------------------	--

5/38

- 13 TeV invariant mass distributions
- 78 pb⁻¹ of integrated luminosity
- Good agreement between data and total background expectations in whole mass range

• 13 TeV ATLAS highest ee mass event: $M_{ee} = 739$ GeV • $(E_{T,1}, \eta_1) = (189$ GeV, 1.08), $(E_{T,2}, \eta_2) = (177$ GeV, -1.58)

• 13 TeV ATLAS highest $\mu\mu$ mass event: $M_{\mu\mu} = 881 \text{ GeV}$ • (20 - 200 GeV + 103) (20 - 200 GeV + 0.82)

CMS Dilepton resonances $(X \rightarrow II)$ — arXiv

- Models: Randall-Sundrum, Sequential Standard Model, Z'_{uv}
- Main backgrounds: irreducible Drell-Yan, tt, QCD
- Lepton selection: shower shape + isolation
- Background estimation
 - Drell-Yan estimated from Monte-Carlo
 - QCD multijets from double-differential fake rate method (E_t , η)
 - $t\bar{t}$, tW, VV extracted from Monte-Carlo but cross-checked with $e\mu$ method.
 - $\bullet\,$ Total normalized to 60-110 GeV region \rightarrow cancel some uncertainties

9/38

CMS Dilepton resonances $(X \rightarrow II)$ — arXiv

Statistical interpretation

- unbinned likelihood ratio (Bayesian interpretation)
- Parameter of interest: cross section ratio $R_{\sigma} = \sigma'_Z / \sigma_Z$.
- Limits set on narrow resonance, can be reinterpreted in any model predicting a resonant structure.

• Observed limits (TeV): Z'_{SSM} (2.90), Z'_{ψ} (2.57), G (2.73) for $\tilde{k}=0.1$

- $\mu\mu$: Contributions from multijet and W+jets events not shown (negligible)
- $\mu\mu$: Preliminary alignment of tracker-muon system

э

• 13 TeV CMS highest *ee* mass event: $M_{ee} = 2.9$ TeV

(日) (同) (三) (三)

3

• 13 TeV CMS highest $\mu\mu$ mass event: $M_{\mu\mu} = 920$ GeV

ATLAS diphoton resonances $(X \rightarrow \gamma \gamma)$ — arXiv, EXOT

- Models: Randall-Sundrum graviton
- \bullet Irreducible background: SM $\gamma\gamma$ background (Born, Box processes) evaluated from Monte Carlo
- Reducible background: QCD dijet and γ +jet estimated using control region templates and extrapolated to signal region using a smooth function.
- Total background normalized to control region (179-409 GeV)

Main systematics from shape of irreducible background contribution (dominated by PDF uncertainties)

ATLAS diphoton resonances $(X \rightarrow \gamma \gamma)$ — arXiv

Statistical interpretation

- Bayesian formalism (binned likelihood)
- Signal K factor: 1.6 to 1.9

• Observed limits: 2.66 and 1.41 for $\tilde{k} = 0.1$ and 0.01 respectively.

ATLAS diphoton resonances $(X \rightarrow \gamma \gamma)$ — EXOT

13 TeV ATLAS highest γγ mass event: M_{γγ} = 940 GeV
(E_{T,1}, η₁) = (374 GeV, 1.71), (E_{T,2}, η₂) = (212 GeV, -0.60)

16/38

- Models: Randall-Sundrum graviton
- Irreducible background: SM $\gamma\gamma$ Born and Box processes evaluated from MC using a NNLO K factor calculated using $2\gamma {\sf NNLO}.$
- Reducible background: QCD dijet and $\gamma+{\rm jet}$ estimated using data-driven fake rate approach
- $\bullet\,$ No normalization to control region here $\rightarrow\,$ strict data/background comparison

Azimuthal angle separation ($\Delta \phi$) and transverse momentum of the diphoton pair (q_t)

- Generally difficult to bring to agreement in all regions.
- Very good agreement observed.

Statistical interpretation

- Bayesian formalism (unbinned likelihood)
- Signal K factor: between 1.5 and 1.7

• Observed limits (TeV): 1.45, 2.31 and 2.78 for $\tilde{k} = 0.01, 0.05$ and 0.1

• 13 TeV CMS highest $\gamma\gamma$ mass event: $M_{\gamma\gamma} = 733$ GeV

CMS Experiment at LHC, CERN Data recorded: Thu Jul 16 04:37:00 2015 CEST Run/Event: 251883 / 108749975 Lumi section: 171 Orbit/Crossing: 44591162 / 323

(日) (同) (三) (三)

3

ATLAS $\tau \tau$ resonances $(X \rightarrow \tau \tau)$ — JHEP

• Models: Z'_{SSM} , Z'_L , Z'_R , Z'_{NU}

Key features of the selection:

- lepton-hadron ($au_{lep} au_{had}$) and hadron-hadron ($au_{had} au_{had}$) channels
- Hadronic τ decays: BDT (shower shape and tracking) \rightarrow false identification rate of q/g jets below 1%
- Leptons: isolation + shower shape (e) + muon quality criteria

•
$$E_t = |\sum p_{T,high} + \sum \vec{p_{T,remain}}|$$

• Opposite sign and back to back ($|\Delta \phi| < 2.7$ rad)

Background estimates

- $Z/\gamma^* \to \tau \tau$ from MC for both channels
- QCD multijet (high mass) from fake factors measured in multijet control region for $\tau_{had} \tau_{had}$ channel
- Events with q/g jet faking hadronic τ (W+jets) from fake factors measured in W+jets control region for $\tau_{lep}\tau_{had}$ channel

Systematic uncertainties

- $\tau_{had}\tau_{had}$: τ ID efficiency and energy scale
- $\tau_{lep}\tau_{had}$: statistical uncertainty on background (fake factor)

ATLAS $\tau \tau$ resonances $(X \rightarrow \tau \tau)$ — JHEP

Good agreement between data and total background in both channels

3/38

ATLAS $\tau \tau$ resonances $(X \rightarrow \tau \tau)$ — JHEP

Statistical interpretation

- Bayesian interpretation: likelihood from product of Poisson distributions in each channel
- m_T^{tot} optimized for best expected limits
- $Z'/(Z/\gamma^*)$ interference effects neglected

• Observed limits: 2.02 TeV for the Z'_{SSM}

• Models: Z'_{SSM} , Z'_{ψ}

Key features of the selection:

- Back to back, isolated and well identified electron and muon of opposite charge and well separated.
- No b-jets.

Background estimates

- $t\bar{t}$ contribution extracted from control regions
- QCD multijet contribution from like-sign method in high purity multijet sample
- Drell-Yan extracted from MC but compared to data in low mass region (M(μ ,e, E_t) < 200 GeV).
- Similar approach for WW and W+jets.

CMS $\tau \tau$ resonances $(X \rightarrow \tau \tau \rightarrow e \mu \nu \nu)$ — CDS

Statistical analysis

- Bayesian formalism
- Mass dependent signal K factors

• Observed limits (TeV): 1300 GeV (Z'_{SSM}) and 810 GeV (Z'_{ψ})

- Searches for high mass resonances performed in ATLAS and CMS collaborations
- Sringent limits published by both experiments
- Dedicated isolation techniques for searches involving leptons from boosted objects
- Not all searches covered here \rightarrow ATLASExotica, CMSExotica, CMSB2G
- No sign of new physics so far
- 3 fb^{-1} expected for 2015 \rightarrow supersede results of most analyses presented.
- Thanks to all LHC people
- Many thanks to the LHCP organizers.

ADDITIONAL MATERIAL

3

-

13 TeV ATLAS highest ee mass event: M_{ee} = 739 GeV
(E_{T,1}, η₁) = (189 GeV, 1.08), (E_{T,2}, η₂) = (177 GeV, -1.58)

э

13 TeV ATLAS highest μμ mass event: M_{μμ} = 881 GeV
 (p_{T,1}, η₁) = (305 GeV, -1.03), (p_{T,2}, η₂) = (300 GeV, 0.82)

30/38

э

• 13 TeV CMS highest *ee* mass event: $M_{ee} = 2.9$ TeV

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

• 13 TeV CMS highest *ee* mass event: $M_{ee} = 2.9$ TeV

• 13 TeV CMS highest *ee* mass event: $M_{ee} = 2.9$ TeV

Otman Charaf (University of Alabama) Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LHC).

33/38

3

(日) (同) (三) (三)

• 13 TeV CMS highest *ee* mass event: $M_{ee} = 2.9$ TeV

Otman Charaf (University of Alabama)

Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LHC).

34/38

• 13 TeV CMS highest $\mu\mu$ mass event: $M_{\mu\mu} = 920$ GeV

35/38

• 13 TeV CMS highest $\mu\mu$ mass event: $M_{\mu\mu} = 920$ GeV

Otman Charaf (University of Alabama) Searce

Search for high mass dilepton and diphoton resonances at the Large Hadron Collider (LHC)

36/38

э

• 13 TeV CMS highest $\gamma\gamma$ mass event: $M_{\gamma\gamma} = 733$ GeV

Z' Interference effects at the LHC — arXiv

• Interference effects in case of Z'_{SSM}

Figure 1. (a) Invariant mass distribution in the presence of a SSM Z' resonance, computed with and without interference between the Z' and the SM. (b) Ratio of these two predictions to the pure SM Drell-Yan result. LHC@8TeV with $M_{Z'}=2.5$ TeV is considered. No kinematical cuts are applied and the CT10 NLO best fit PDF set is used.

-