

ATLAS/CMS: B production

Zheng Wang

Institute of High Energy Physics, CAS, Beijing (On behalf of CMS/ATLAS collaboration)

The 3rd Conference on Large Hadron Collider Physics, 31 Aug-5 Sep 2015, Saint Petersburg

Introduction

The b-hadron production has been predicted with NLO accuracy for more than twenty years. However, the dependence on the factorization, renormalization scales, m_b results in theoretical uncertainties of up to 40%.

The large production cross--sections for B hadron particles in pp collisions at LHC energies provides opportunities for testing the Standard Model picture of flavor dynamics.

Motivation:

- Test of perturbative & non-- perturbative QCD models for B hadrons production/fragmentation.
- Study dynamics of heavy quarks inside hadrons, decay models and spectroscopy.
- Heavy flavored hadrons are profusely produced at the LHC. It is possible to study/search for some quarkonium-- - like exotic states and new physics.

CMS and ATLAS

General Purpose Detectors running on LHC

	ATLAS	CMS
Axial Magnetic field	2 T	3.8 T
Track momentum resolution σ/p ^{T2} [GeV] ⁻¹	~0.05%p _T + 0.015	~0.015%p _T + 0.005
Lifetime resolution	~100 fs	~70 fs
ID tracking η _{max}	2.5	2.5
Muon System η _{max}	2.7	2.4

precision tracking

- good momentum, impact parameter and vertex resolutions
- good b-tagging capability
 robust muon identification
 - muon detection down to low p_T, low mis-identification rates

ATLAS and CMS fully exploit the highest HF production rates and highest LHC luminosities, and Sept. 20 access regimes and phase space, complementary to B factories, Tevatron, and LHC pihep, CAS

Data and trigger system

proton proton collision

- $\sqrt{s} = 7 \text{ TeV}$, $\mathcal{L} = 5 \text{ fb}^{-1}$ (2011 run) • $\sqrt{s} = 8 \text{ TeV}$, $\mathcal{L} = 20 \text{ fb}^{-1}$ (2012 run)
- $<\mu>_{2011}=8$ PV, $<\mu>_{2012}=21$ PV

Trigger selection for heavy flavour studies is mostly based on di-muon signature. Collect data at increasing instantaneous luminosity.

- muon p_T threshold (4 or 6 GeV)
- di-muon vertex reconstruction
 sep any ariant mass window

CMS Integrated Luminosity, pp

Inclusive b production

Early inclusive b production measurements are performed at ATLAS and CMS, data sample $\sim nb^{-1}$ to several $\sim pb^{-1}$.

Inclusive b-hadron with muon 7 TeV, 85 nb⁻¹ Inclusive bbarX $\rightarrow \mu\mu X'$ 7 TeV, 27.9 pb⁻¹, Inclusive b-jet production 7 TeV, 34 pb⁻¹, b-hadron (D*+ μ -X) 7 TeV, 3.3 pb⁻¹ b di-jets 7 TeV, 3.3 pb⁻¹, CMS: JHEP 03 (2011) 090,
CMS: JHEP 06 (2012) 110,
CMS: JHEP 04 (2012) 084,
ATLAS: Nucl. Phys. B 864 (2012) 341,
ATLAS: Nucl. Phys. B 864 (2012) 341,

Inclusive b production

Production Cross Sections are measured with few data in early ATLAS/CMS run.

Differential Cross Sections are consistent with NLO predictions.

B⁺ production

 $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$

CMS Vs = 7 TeV

 $L = 5.8 \text{ pb}^{-1}$

B⁰, B_s production

Z.Wang, IHEP, CAS

B^0 , B_s production

6000

ATLAS

GeV

1600

Z.Wang, IHEP, CAS

 $B_{s}^{0} \rightarrow J/\psi f^{0}(980), J/\psi\phi$

CMS

Submttted to Phys. Lett. B, arXiv:1501.06089

$$\mathsf{R}(\mathsf{f}^0/\phi) \quad \frac{\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mathsf{J}/\psi\,\mathsf{f}_0)\mathcal{B}(\mathsf{f}_0 \to \pi^+\pi^-)}{\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mathsf{J}/\psi\,\phi)\mathcal{B}(\phi \to \mathsf{K}^+\mathsf{K}^-)} = 0.140 \pm 0.013\,(\mathsf{stat}) \pm 0.018\,(\mathsf{syst}).$$

10

The result is consistent with the theoretical prediction of about 0.2

PRD 79 (2009) 074024

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

φ [rad]

 $\cos(\theta_{\tau})$

Z.Wang, IHEP, CAS

ϕ_s world summary

	Experiment	ΔΓ _s (ps ⁻¹)	<mark>∳</mark> s (rad)	
	ATLAS (4.9/fb)	$0.053 \pm 0.021 \pm 0.010$	0.12±0.25±0.05	R-JT/10
	CMS (20/fb)	$0.095 \pm 0.013 \pm 0.007$	-0.075±0.097±0.031	$D_{S} \rightarrow J / \psi \psi$
Sept. 2015	LHCb (3/fb)	0.0805±0.0091±0.0032	-0.058±0.049±0.006	В₅→J/ψКК, J/ψππ, ФФ _{Р. САЗ}

0.1

0.4

-0.

dB/dq² (10⁻⁸ × GeV

CMS

Submttted to Phys. Lett. B arXiv:1507.08126, 8 TeV, 20.5 fb⁻¹

A_{FB}: forward-backward asymmetry of muons,

F₁: K^{*0} longitudinal polarization fraction.

dB/dq²: differential branching fraction (as a function of the di-µ inv. mass squared)

In good agreement with standard model predictions

Sept. 2015

CMS, Vs = 7 TeV, L = 5.2 fb

 $1.008 < m(K^+K^-)$

CMS: PLB 734 (2014) 261

 $B^{\pm} \rightarrow J/\psi + \phi + K^{\pm}, \phi \rightarrow K^{+}K^{-}$

2 peaking structures in $\Delta m =$ $m(\mu^{+}\mu^{-} K^{+}K^{-}) - m(\mu^{+}\mu^{-})$ spectrum:

 $m_1 = 4148.0 \pm 2.4$ (stat.) ± 6.3 (syst.) MeV $\Gamma_1 = 28^{+15}_{-11}$ (stat.) ± 19 (syst.) MeV Significance > 5σ Consistent with Y(4140) reported by CDF

 $m_2 = 4313.8 \pm 5.3$ (stat.) ± 7.3 (syst.) MeV $\Gamma_2 = 38^{+30}_{-15}$ (stat.) \pm 16 (syst.) MeV

Peaking Structures in $B^{\pm} \rightarrow J/\psi \phi K^{\pm}$

PLB

ယ် န

2014

5

P. CAS

< 1.035 Ge\

B_c production

CMS JHEP 1501 (2015) 063

Excited B_c search

>No excited states of B_c^+ reported previously.

> The spectrum and properties of B_c^+ family are predicted by non-relativistic potential models, perturbative QCD and lattice calculations.

ATLAS Phys. Rev. Lett. 113 (2014) 21, 212004

p_T distribution falls faster than measured *b*-mesons spectra and than predicted spectra from NLO MC POWHEG and leading-order MC PYTHYA.

Septrons section ratio $\sigma(\overline{\Lambda}_b^0)/\sigma(\Lambda_b^0)$ consistent with 1 and constant vs p_T, and rapidity |y|. z.wa

Z.Wang, IHEP, CAS

$\Lambda_{\rm b}$ production

mass and lifetime ATLAS m = 5619.7 ± 0.7 ± 1.1 MeV $\tau = 1.449 \pm 0.036 \pm 0.017$ ps $\tau = 1.503 \pm 0.052 \pm 0.031$ ps CMS

- Parity violating asymmetry parameter $\alpha_{\rm b}$ and the helicity amplitudes
 - ATLAS $a_b = 0.30 \pm 0.16 \pm 0.06$ (assume CP conservation)
 - Perturbative quantum chromodynamics (pQCD): $\alpha_{\rm b}$ = -0.17 to -0.14 (PRD 65, 074030 (2002))
- \blacktriangleright Heavy quark effective theory (HQET): $\alpha_{\rm b} =$ 0.78 (PLB 614, 165 (2005)) Sept. 2015

ATLAS: Phys. Rev. D 87, 032002 (2013)

ATLAS: Phys. Rev. D 89, 092009 (2014)

-0.5

 $\Lambda_b + \overline{\Lambda}_b$

0.5

cbest=0.30

 $(\alpha^{\text{Dest}})=3.15$

 $\Lambda_{\rm b}$: $\psi(2S) + \Lambda^0$

ATLAS

${\Xi_{b}}^{*0}$ observation

 $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$ Complex cascade decay CMS: PRL 108, 252002 (2012) $\rightarrow \Xi_c^- J/\psi \pi^+$ topology $\rightarrow \Lambda^0 \pi^- J/\psi \pi^+$ 4 displaced vertices • CMS observes new baryon state: Ξ_{h}^{*0} 6 final state tracks $\rightarrow \mu^+ \mu^- \rho^+ \pi^- \pi^- \pi^+$ note: LHCb just reported two charged 16 additions to the $\Xi_{\rm b}$ family: $\Xi_{\rm b}^{-}$, $\Xi_{\rm b}^{*-}$ candidates per 2 MeV CMS Opposite-sign data pp, √s = 7 TeV 14 $\delta m = m(\Xi_b^{*0}) - m(\Xi_b^-) - m_{\pi^+} = 14.84 \pm 0.74 \pm 0.28 \text{ MeV}$ Signal+background fit L = 5.3 fb⁻¹ 12 $m(\Xi_b^{*0}) = 5945.0 \pm 0.7 \pm 0.3 \pm 2.7$ (PDG) MeV ----- Background (b) $\Gamma(\Xi_b^{*0}) = 2.1 \pm 0.74 \text{ MeV}$ 10 21 signal events significance $>5\sigma$ ° a [1] 6 2 PV J/ψ 30 10 50 20 40 $M(J/\psi\Xi^{-}\pi^{+}) - M(J/\psi\Xi^{-}) - M(\pi)$ [MeV] π_{PV}^+ 21 Z.Wang, IHEP, CAS Sept. 2015

Highly suppressed decay in SM

Forbidden ar tree level \rightarrow FCNC transitions only possible through penguin or box diagram. Cabibbo $|V_{td}| < |V_{ts}|$ and helicity suppressed

SM predictions

 $\begin{array}{l} \mathsf{BR}(\mathsf{B}^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10} \\ \mathsf{BR}(\mathsf{B}_{\mathsf{s}}^{\ 0} \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9} \end{array} (\mathsf{PRL112}, \ 101801, \ 2014) \\ \end{array}$

Sensitivity to NP

2HDM and m(H⁺) Leptoquarks $\begin{array}{l} \text{MSSM tan } \beta \\ \text{4}^{\text{th}} \text{ generation top} \end{array}$

 $B_{s,d} \rightarrow \mu \mu$ search

Physics Letters B 713 (2012) 387-407

Z.Wang, IHEP, CAS

B_{s'd}: CMS + LHCb

Z.Wang, IHEP, CAS

CMS+LHCb: Nature 522 (2015) 68

Data: 25 fb⁻¹ (CMS) and 3 fb⁻¹ (LHCb)

Selection: BDT with 20 categories, 12 CMS categories which depend on \sqrt{s} , detector region, and BDT ranges + 8 LHCb categories which depend on BDT ranges

Common parameters: hadronisation fraction f_d =f_s ,B(B^{\pm}{\rightarrow}J/\psi K^{\pm})

$$\mathcal{B}(B_{s} \to \mu\mu) = (2.8^{+0.7}_{-0.6}) \cdot 10^{-9} \quad S = 6.2\sigma \text{ (Exp: 7.4}\sigma)$$
$$\mathcal{B}(B_{d} \to \mu\mu) = (3.9^{+1.6}_{-1.4}) \cdot 10^{-10} \quad S = 3.0\sigma \text{ (Exp: 0.8}\sigma)$$

Measurement of the ratio $R = BR(B^{0} \rightarrow \mu^{+}\mu^{-}) / BR(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})$ $= 0.14^{+0.08}_{-0.06}$

Compatible with the SM prediction R = $0.0295^{+0.0028}$ - $_{0.0025}$ at the 2.3 σ level

$\Upsilon(nS)$ cross section

× B(µµ) (nb/(GeV/c))

10-3

⁻ hp[⊥]10⁻⁴ ho⁻²p

ATLAS: Phys. Rev. D 87, 052004 (2013);

S-wave measurements for $0 < p_T < 100 \text{ GeV}$

 \rightarrow high-p_T reach allows to probe models with increasing precision >Tevatron and LHCb data limited to $p_T < 15$ GeV

CMS: Phys. Lett. B 749 (2015) 14

P-wave bottomonia

radiative decays $\chi_b \to \Upsilon(nS)\gamma$ are explored to reconstruct P-wave bottomonia.

- > Photons reconstructed by e^+e^- or detected in calorimeters
- > χ_b (3*P*) first observed by ATLAS

ATLAS: P.R.L 108 (2012) 152001 CMS: P.L.B 743 (2015) 383–402

Υ(**1S**)π⁺π⁻

CMS Phys. Lett. B 727 (2013) 57 (8 TeV, 20/fb)

Exotic resonance X(3872) discovered in the final state $J/\psi \pi^+\pi^-$ A bottomonium counterpart X_h may exist and decays into $\Upsilon(1S) \pi^+\pi^{--}$

Sept. 2015

Summary

CMS and ATLAS collaborations extensively measured inclusive and exclusive productions with LHC run-I data. Gave significant contribution in the study of rare decays. Stringent test of the Standard Model prediction, Great effect on New Physics searches

Achievements include:

Precision measurements of b hadron production and decay properties,

 Spectroscopy: observation of new meson and baryon states and decay modes,

♦ rare processes: observation of the long-sought $B_s \rightarrow \mu\mu$ decay.

higher energy, luminosity and pileup of coming LHC runs will bring both challenges and new possibilities to B physics studies

Thanks !

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

HF Physics talks in the parallel meeting.

Sept.

_.P, CAS