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UNIVERSITÀ DI MILANO & INFN

LHCP 2015 ST. PETERSBURG, SEPT. 4, 2015



THE CHALLENGE

HIGGS SIGNAL STRENGTH

P. Savard, EPS, July 2015



THE BOTTLENECK

(J. Campbell, HCP2012)

• QCD, PERTURBATIVE & NONPERTURBATIVE, IS THE

DOMINANT SOURCE OF UNCERTAINTY

• MANY UNCERTAINTIES IMPROVING (OR ABOUT TO IMPROVE)



INTERLOCKED KNOWLEDGE

• QCD TALKS TO THE REST OF THE SM!

• CORRELATED UNCERTAINTIES BETWEEN SM PROCESSES

CORRELN. OF PDF UNCERTAINTIES

HIGGS BACKGROUND PROCESSES
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AN EXAMPLE

GAUGE BOSON PAIR PAIR PRODUCTION

Brown & Mikaelian, 1979

• SENSITIVE TO TRIPLE­GAUGE COUPLINGS & UNITARITY VIOLATION

• IMPORTANT BACKGROUND TO HIGGS PRODUCTION

• CAN BE USED TO BOUND THE HIGGS WIDTH FROM INTERFEROMETRY/OFF­SHELL

MEASUREMENTS

• W+W−
HAS LARGEST RATE, MORE CHALLENGING FINAL STATE

• NLO QCD CORRECTIONS LONG KNOWN

• NLO ELECTROWEAK CORRECTIONS DETERMINED

• VERY RECENT PROGRESS ON HIGHER ORDER CORRECTIONS & RESUMMATION



W PAIR PRODUCTION

THE DATA

LEADING LEPTON pT

ATLAS 2013

INVARIANT MASS DISNT.

CMS 2013

• TOTAL CROSS­SECTION MEASURED BY ATLAS & CMS

• SLIGHT EXCESS OVER SM:

51.9 ± 2.0STAT. ± 3.9SYST. ± 2.0LUM. (ATLAS)

52.4 ± 2.0STAT. ± 4.5SYST. ± 2.0LUM. (CMS)

VS. 47.0 ± 2.0MC ± 4.5SCALE ± 3.0PDF PB (CAMPBELL, ELLIS, WILLIAMS, 2012)



PDFS



W PAIR PRODUCTION

PDF UNCERTAINTIES

• UNCERTAINTY ON THE TH PREDICTION QUOTED BY ATLAS IS OBTAINED USING

MSTW08

• PDF UNCERTAINTY USED IN THE ANALYSIS FROM MSTW08, WITH

MSTW08­CT10 DIFFERENCE ADDED

PDF PROGRESS:
MORE FEATURES

NNPDF3.0 MMHT14 CT14

NO. OF FITTED PDFS 7 7 6

PARAMETRIZATION NEURAL NETS
xa(1 − x)b

×CHEBYSCHEV

xa(1 − x)b

×BERNSTEIN

FREE PARAMETERS 259 37 30­35

UNCERTAINTIES REPLICAS HESSIAN HESSIAN

TOLERANCE NONE DYNAMICAL DYNAMICAL

CLOSURE TEST ✔ ✗ ✗

REWEIGHTING REPLICAS EIGENVECTORS EIGENVECTORS

MORE DATA
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PDFS: RECENT PROGRESS
PARTON LUMINOSITIES
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PDFS: RECENT PROGRESS
HIGGS IN GLUON FUSION
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• PDF4LHC PRESCRIPTION 2012: ENVELOPE, PDF UNCERTAINTY ∼ 6%

• PDF4LHC PRESCRIPTION 2015: STATISTICAL COMBINATION, PDF UNCERTAINTY

∼ 2%



THE NEW PDF4LHC PRESCRIPTION
• CONVERT ALL SETS INTO MONTE CARLO

• HESSIAN SETS CAN BE CONVERTED BY PERFORMING MONTE CARLO IN PARAMETER
SPACE (Watt, Thorne, 2012)

• COMBINE MONTE CARLO REPLICAS INTO SINGLE SET

COMBINED MC SETS FOR ANTIDOWN & STRANGE

• COMBINED SET CONVERTED INTO MANAGEABLE FORMATS:

– COMPRESSED MONTE CARLO: MC100
(Carrazza, Latorre, Rojo, Watt, 2015)

– ULTRAFAST OR ULTRAPRECISE HESSIAN: H30 & H100
(Gao, Nadolsky, 2014; Carrazza, SF, Kassabov, Latorre, Rojo, 2015)



PDF EXOTICA
QED PDFS

γ

γ

W

W
γ

γ

W

W
W

γ

γ

W

WW

• PHOTON COUPLES DIRECTLY TO W

• PHOTON­INDUCED W PAIR PRODUCTION

COMPARABLE TO QUARK­INDUCED FOR LARGE

INVARIANT MASS
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NNPDF2.3QED, Carrazza et al. 2013

RESUMMED PDFS

• THRESHOLD RESUMMATION AFFECTS LARGE x

PDFS ⇒ HEAVY FINAL STATES

• CORRECTION COMPARABLE IN SIZE TO THAT ON

MATRIX ELEMENT

• COMPENSATION BETWEEN CORRN

TO PDF & ME

Bonvini, Marzani, Rojo, Rottoli, Ubiali et al., 2015



NNLO & HEAVY QUARKS



W PAIR PRODUCTION
NNLO QCD CORRECTIONS
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(Gehrmann, Grazzini, Kallweit, Maierhöfer, von Mantteuffel, Pozzorini, Rathlev, Tancredi, 2014)

• NLO QCD, NNLO GLUON CHANNEL, NLO EW CORRNS KNOWN,

NNLO COMPUTED RECENTLY: ∼ 10% ENHANCEMENT W.R. TO NLO, UNDERESTIMATED BY

SCALE VARIATION (NEW PARTONIC SUBCHANNELS)

• 5­FLAVOR VS 4 FLAVOR SCHEME: IN 5FS, HUGE RESONANT pp → Wt → WWb

• CANNOT JUST REJECT B WITH pbT < pbT, veto ⇒ ln pT /mb DEPENDENCE, AMBIGUITY

• SUBTRACT RESONANT USING DEPENDENCE ON WIDTH Γt



5FS VS 4FS
HIGGS+SINGLE TOP

5F: ; 4F:

(Demartin, Maltoni, Mawatari, Zaro, 2014)

• 5FS EASIER AT HIGHER ORDERS, BUT 4FS MORE REALISTIC FINAL STATE

• GOOD AGREEMENT FOR INCLUSIVE OBSERVABLES ALREADY AT NLO

• AGREEMENT FOR SINGLE DISTRIBUTIONS, 5FS MORE ACCURATE FOR MULTIPARTICLE FS



5FS VS 4FS
bb̄ HIGGS
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• LARGE DIFFERENCES BETWEEN 4FS & 5FS, ALLEVIATED BY LOW SCALE CHOICE & HIGHER

ORDER IN THE 4FS COMPUTATION

• MATCHED RESULT AVAILABLE IN FONLL (4FS LO+ 5FS NNLL) & SCET (4FS NLO+ 5FS
NLL) APPROACH: DIFFER BY SUBLEADING TERMS, FONLL ALLOWS FOR ANY COMBINATION OF
ORDERS

• FONLL SHOWS THAT PURE MASS CORRECTIONS TO MASSLESS NNLL ∼ 10%, BUT AFFECTED
BY LARGE SCALE DEPENDENCE

• NAIVE ’SANTANDER’ MATCHING NOT VERY RELIABLE

(Bonvini, Papanastasiou, Tackmann, 2015); (SF, Napoletano, Ubiali, 2015)



NNLO PROGRESS
W+JET; W pT : JETTINESS SUBTRACTION

• CATANI­GRAZZINI­LIKE SUBTRACTION FOR COLORED FINAL STATES

• CANCEL INFRARED DIVERGENCE USING UNIVERSAL BEHAVIOUR OF RESUMMED
RESULT:
N­JETTINESS TN AS RESUMMED OBSERVABLE

– FOR TN > T
cut
N , NNLO=NLO+ONE JET

– FOR TN < T
cut
N EXPAND OUT RESUMMED RESULT

CUT DEPENDENCE CANCELLATION W pT DISTN.

(Boughezal, Focke, Giele, Liu, Petriello, 2015)

• NNLO CORRECTIONS TO W pT COMPUTED: MODERATE

• METHOD ALSO APPLIED TO HIGGS+JET: ALL­CHANNEL NNLO



NNLO PROGRESS
Z+JET

• IMPORTANT FOR PDF DETERMINATION: SIZE OF THE GLUON

• COMPUTED USING ANTENNA SUBTRACTION ⇒ DIFFERENTIAL DISTRIBUTIONS

Z pT DISTN. Z RAP. DISTN.

(Gehrmann-de Ridder, Gehrmann, Glover, Huss, Morgan, 2015)

• MODERATE NNLO CORRECTIONS

• CORRECTIONS IN DIFFERENTIAL DISTRIBUTIONS NON UNIFORM ⇒ CANNOT JUST
GIVE K­FACTOR



NNLO PROGRESS
HIGGS+JET: FULL COMPUTATION

• FULLY DIFFERENTIAL, ALL­CHANNEL ANALYTIC RESULT

• MAIN DIFFICULTY:

– DIFFERENT MULTIPLICITIES CANNOT BE COMBINED ⇒ PHASE­SPACES DIFFERENT

– FULLY ANALYTIC ⇒ NO INTEGRATION OVER HIGHER MULTIPLICITIES

• SOLUTION: SECTOR IMPROVED RESIDUE SUBTRACTION FOR PHASE­SPACE
PARAMETRIZATION (Czakon 2010; Boughezal, Melnikov, Petriello 2012)

SCALE DEPENDENCE DEPENDENCE ON JET pT CUT

(Boughezal, Caola, Melnikov, Petriello, Schulze, 2015)

• SIZABLE NNLO CORRECTIONS

• SIZE OF CORRNS DEPENDS STRONGLY ON MINIMUM pT OF THE JET

• FIDUCIAL RESULTS (INCLUDING HIGGS DECAY) NOW AVAILABLE (Caola, Melnikov,
Schulze, 2015)



NNLO PROGRESS

FULLY DIFFERENTIAL HIGGS IN W FUSION
(Cacciari, Dreyer, Karlberg, Salam, Zanderighi, 2015)

HIGGS pT
DISTRIBUTION

RAPIDITY SEP.
LEADING JETS

• STRUCTURE FUNCTION APPROX:
SQUARE OF DIS

• NNLO DIS KNOWN AT INCLUSIVE
LEVEL: DIFFERENTIAL INFO LOST

• PROJECTION TO BORN:
– INCLUSIVE 2 LOOP HAS BORN

KINEMATICS!
– DOUBLE REAL & PROJECTED

ONE­LOOP SINGLE REAL IN
BORN KINEMATICS

– EXCLUSIVE PART FROM VBF
H+3J AT NLO (Figy, Hankele,
Jäger, Schissler, Zeppenfeld 2008-
2014)

RESULTS

• LARGE NNLO CORRNS:
NLO FIRST ORDER AT WHICH NON­
INCLUSIVENESS MATTERS

• CAPTURED BY PARTON SHOWER­
ING FOR pT DISN,
NOT FOR RAPIDITY SEPARATION



SOFT GLUON
RESUMMATION



W PAIR PRODUCTION
SOFT GLUON RESUMMATION

WW INV. MASS DISTN.
RESUMMED VS NLO
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(Dawson, Lewis, Zeng, 2015)

• RESUMMATION PERFORMED IN SCET AT NNLL (CORRESP. TO NN1/2LL)

• 3­4% ENHANCEMENT AT THE PEAK,
∼
< 1% ENHANCEMENT OF TOTAL XSECT.

• MOST OF THE EFFECT DUE TO USE OF NNLO PDFS ⇒ APPROXIMATE NNLO



Q: WHEN IS RESUMMATION USEFUL?

• PARTONIC CROSS SECTIONS σ̂(z, αs) ARE DISTRIBUTIONS, 0 ≤ z =
M2

h
s

≤ 1,
CONVOLUTED WITH LUMINOSIITY TO GIVE HADRONIC CROSS­SECTION

• THEIR MELLIN TRANSFORMS σ̂(N,αs) ARE ORDINARY FUNCTIONS

• FOR GIVEN m2
H AND s ONLY ONE “SADDLE” N VALUE CONTRIBUTES;

POSITION OF SADDLE DETERMINED ESSENTIALLY BY PDF
⇒ PDF TELLS YOU WHICH FRACTION OF HADRON MOMENTUM GOES INTO PARTONIC PROCESS

A: WHEN SADDLE N IS LARGE!

• SOFT RESUMMATION INCLUDES TO ALL ORDERS αs ln(1− z), z =
M2

X
s

⇔ αs lnN

• SOFT ↔ z → 1 ↔ N → ∞.

EXAMPLE: HIGGS IN GLUON FUSION

• RESUMMATION CURRENTLY INCLUDED IN HXSWG
RECOMMENATION: NNLO+NNLL

• BUT Nsaddle ∼ 2, ⇒ RESUMMATION SUMS UP

β0αs ln 2 ≈ 0.04 ≪ 1

SADDLE VS COLLIDER ENERGY

(Bonvini, SF, Ridolfi, 2012)



HIGGS IN GLUON FUSION:
DOES RESUMMATION HELP?

NO?

(Anastasiou, Duhr, Dulat, Furlan, Gehrmann,
Herzog, Mistlberger, 2014)

• “LEADING” LOGS DO NOT PROVIDE THE
DOMINANT CONTRIBUTION

• EXPANSION IN POWERS OF 1/N CONVERGES

VERY SLOWLY

YES!

Bonvini and Marzani, 2014

• RESUMMED EXPANSION CONVERGES
FASTER THAN UNRESUMMED ONE

• SCALE DEPENDENCE ALWAYS SMALLER AT

RESUMMED LEVEL



HIGGS IN GLUON FUSION:
APPROXIMATE N3LO?

IS THERE A PREFERRED WAY OF EXPANDING?
NO?

PERFORM SOFT EXPANSION OF
σ̂(z)

zn+1

& STUDY THE z DEPENDENCE:
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(Anastasiou, Duhr, Dulat, Furlan, Gehrmann,
Herzog, Mistlberger, 2014)

• SOFT EXPANSION DEPENDS STRONGLY ON
WHAT ONE EXPANDS

• NO SIGN OF CONVERGENCE WITHIN THE

KNOWN ORDERS

YES!
COMBINE SMALL AND LARGE N SINGULARITIES,

ALLOWING FOR UNCERTAINTY DUE TO UNKNOWN ONES:

(Ball, Bonvini, SF, Marzani, Ridolfi, 2013)

• ASYMPTOTIC CONSTRAINTS STRONGLY
BOUND BEHAVIOUR IN THE MIDDLE

• AT KNOWN ORDERS, EXACT RESULT NICELY

BRACKETED



HIGGS IN GLUON FUSION:
EXACT N3LO!

SCALE DEP.
VS PERTURBATIVE ORDER

(Anastasiou, Duhr, Dulat, Herzog, Mistlberger,
2015)

SCALE DEP. OF N3LO VS. SIZE

COMPARED TO APPROX N3LO
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N3LO approx gghiggs
NNLO
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(Bühler, Lazopoulos, 2013)

• EXACT N3LO PUBLISHED
OBTAINED AS SERIES EXPANSION ABOUT THE SOFT LIMIT, IN POINTLIKE APPROX

• SMALL SCALE DEPENDENCE ⇒ PERTURBATIVE STABILITY!

• IN GOOD AGREEMENT WITH RESUMMATION/APPROX.!



TOP PRODUCTION AT APPROXIMATE N3LO
NNLO MELLIN­SPACE RESULT

APPROXIMATE VS. EXACT

• FULL NNLO TOP PRODUCTION COM­
PUTED RECENTLY! (Czakon, Mitov et al.,
2012-2013)

• AGREES WELL WITH “ANALYTIC” NNLO
APPROXIMATION

• CAN CONSTRUCT APPROXIMATE N3LO
→

• SIGNIFICANTY REDUCES SCALE DEPEN­
DENCE, ∼ 10% CORRECTION AT LHC8

TOTAL CROSS­SECTION

SCALE DEPENDENCE

(Bonvini, S.F., Muselli, Ridolfi, 2015)



SOFT RESUMMATION
BEYOND THE LEADING POWER

• IMPRESSIVE PROGRESS IN THE ORGANIZATION OF RESUMMATION BEYOND THE EIKONAL LEVEL:

NEXT­TO­EIKONAL
lnkN
N

; NEXT­TO­NEXT­TO­EIKONAL
lnkN
N2 ETC (Laenen, Magnea,

C.White+ Bonocore, Melville, Stavenga, Vernazza, 2012-2105)

• “METHOD OF REGIONS”: SEPARATE INTEGRATION REGIONS OVER MOMENTA THROUGH

APPROPRIATE SCALING

• COMBINE WITH FACTORIZATION TO CLASSIFY EMISSIONS FROM INTERNAL BLOBS, DRESSED

WITH RADIATION FROM EXTERNAL LINES



PT RESUMMATION

AND JETS



W PAIR PRODUCTION
JET VETO RESUMMATION

(Jaiswal, Okui, 2015)

• JET VETO pT < pT, veto IS IMPOSED BY ATLAS, CMS TO REDUCE BACKGROUND FROM TOP

• K­FACTOR REDUCED BY ∼ 40% BY JET VETO ⇒ LARGE CANCELLATION BETWEEN VIRTUAL
CORRECTIONS AND SMALL pT REAL EMISSION: STRONG SCALE DEPENDENCE

• CROSS­SECTION FOR HIGGS+ AT LEAST ONE JET CONTAINS DOUBLE LOGS OF MINIMAL pT OF

JET ⇒ CROSS SECTION WITH JET VETO CONTAINS DOUBLE LOGS OF pvetot :

σ≥1 ∼ (αL2)n; σtot ∼ αn → σo ≡ σtot − σ≥1 ∼ (αL2)n;

• RESUMMED UP TO NNLL (Jaiswal, Okui, 2015); AGREEMENT AT FIDUCIAL LEVEL,
EXTRAPOLATION WITH POWHEG LEADS TO OVERESTIMATE THE TOTAL CROSS SECTION,
GOOD AGREEMENT IF EXTRAPOLATION PERFORMED USING ANALYTIC RESUMMATION

(Zanderighi, Monni, 2015)



JETS: COLLINEAR SAFETY AND SUDAKOV SAFETY

(Larkoski, Marzani, Thaler, 2015)

• PROGRESS IN THE DEVELOPMENT OF TOOLS FOR JET
DEFINITION AND CHARACTERIZATION

• JET­SHAPE OBSERVABLES CHARACTERIZING A SINGLE
JET (JET MASS, BROADENING) DEFINED, NON­GLOBAL
LOGS RESUMMED, ANALYTIC RESULTS FOR JET SUB­
STRUCTURE TOOLS

• SUDAKOV SAFE: NO αs EXPANSION, BUT CALCULABLE
AT RESUMMED LEVEL

• EXAMPLE: MOMENTUM SHARING zg ≡
MIN(p1t ,p2t )

p1
t
+p2

T

;

USED FOR SOFT­DROP DECLUSTERING,
⇒ REMOVE WIDE­ANGLE SOFT RADIATION (REDUCE

CONTAMINATION),

zg > zcut

(

R12
R0

)β
, R0 JET RADIUS

• zg NOT IRC SAFE IF β > 0

• SUDAKOV SAFE IF zg CONDITIONAL TO VALUE OF
R12
R0

,

RESUMMING THE DISTN. OF THE LATTER



JETS: THE XCONE ALGORITHM
(Stewart, Tackmann, Thaler, Vermilion, Wilkason, 2015)

• A NEW EXCLUSIVE JET ALGORITHM DEFINED BY MINIMIZING N­JETTINESS:
TN =

∑

i{minρjet(pi, n1) . . . ρjet(pi, nN ), ρbeam(pi)}; ρjet(pi, nA) DISTANCE TO A­TH

AXIS, ρbeam(pi) DISTANCE TO THE BEAM;
OPTIMIZED CHOICE OF MEASURE; ITERATIVE MINIMIZATION WITH SUITABLE SEED
CHOICE

• INTERPOLATES SMOOTHLY BETWEEN RESOLVED AND BOOSTED KINEMATICS

• IN VERY BOOSTED CASE, INCLUSIVE ALGORITHMS (SUCH AS ANTI­kT ) TEND TO

MERGE JETS AND IDENTIFY ISR AS 2ND JET, WHILE XCONE MAINTAINS GOOD

PERFORMANCE

BOOSTED HIGGS: pp → HZ → bb̄νν̄
pT = 200 Gev

(Thaler, Wilkason, 2015)



OFF­SHELL



W/Z PAIR PRODUCTION
OFF­SHELL EFFECTS AND GLUON FUSION

q

q̄′ V2

V1

q̄′

q V1

V2

q = u, d...

g2

g1 V1

V2

q = u, d...

g2

g1 V1

V2

q = u, d...

• NO WS IN FINAL STATE: FOR ACCURATE PHENOMENOLOGY, MUST COMPUTE

pp → V1V2 → (l1 l̄′1)(l2 l̄
′
2)

⇒ TWO­LOOP HELICITY AMPLITUDES IN QUARK­ANTIQUARK CHANNEL RECENTLY COMPLETED

(Caola, Henn, Melnikov, Smirnov2, 2014) ⇒ MADE NNLO RESULT POSSIBLE!

• GLUON FUSION CONTRIBUTION STARTS AT NNLO, AMOUNTS TO ABOUT 5%:
WHAT IF IT IS OFF BY A FACTOR 2 DUE TO RADIATIVE CORRNS.?:

– TWO­LOOP CONTRIBUTION MEDIATED BY MASSLESS QUARK LOOPS JUST COMPLETED,
AVAILABLE WITH OFF­SHELL GAUGE BOSONS (Caola, Henn, Melnikov, Smirnov2, 2015)

–

∗ CONTRIBUTION FOR OFF­SHELL ZZ MEDIATED BY
TOP LOOP IN mt → ∞ LIMIT JUST COMPLETED

(Melnikov, Dowling, 2015)

∗ BEHAVIOUR OF K­FACTOR SIMILAR TO THAT OF
gg → H K­FACTOR; IN GOOD AGREEMENT WITH

PREVIOUS ANALYTIC APPROX. (Bonvini, Caola,
SF, Marzani, Melnikov, 2013)

gg → ZZ K-factor
(& gg → h K-factor)



OFF­SHELL HIGGS PRODUCTION
SIMPLE OBSERVATION (Caola, Melnikov, 2013):

σon−shell(gg → H → e−e+µ−µ+) ∼
g2i g2

f
Γ BUT σoff−shell(gg → H → e−e+µ−µ+) ∼ g2

i g
2
f

• OFF­SHELL/ON­SHELL RATIO ⇒ WIDTH DETERMINATION (CMS, ATLAS)

• OFF­SHELL MEASUREMENTS ⇒ COUPLINGS INDEPENDENT OF WIDTH

CAN PLAY THE SAME GAME WITH VBF HIGGS PRODUCTION
⇒ κV COUPLINGS FROM qq → WWqq (Campbell, K.Ellis, 2015)

SETTING LIMITS ON COUPLINGS

Mgg→ZZ = Mh +Mbkg = ctMct + cgMcg +Mbkg

WHERE L = −ct
mt
v

t̄th+
g2
s

48π2 cg
h
v
GµνGµν

• ON­SHELL CAN INTEGRATE OUT TOP, σ ∼ |ct + cg |2

• OFF­SHELL, CAN MEASURE ct, cg INDEPENDENTLY;
IN SM ct + cg = 1, NO MODEL­INDEP CONSTRAINT YET

(Azatov, Grojean, Paul, Salvioni, 2014)



HIGGS WIDTH & INTERFEROMETRY
SIMPLE OBSERVATION: SIGNAL­BACKGROUND INTEFERENCE SHIFTS HIGGS MASS;
SHIFT PROPORTIONAL TO WIDTH, CAN BE USED TO CONSTRAIN IT (Dixon, Li, 2013)

MASS SHIFT
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(Coradeschi, de Florian, Dixon,
Fidanza, Höche, Ita, Li,

Mazzitelli, 2015)

• MASS SHIFT IN pp → H(→ γγ) + 2j +X MUCH SMALLER THAN IN INCLUSIVE CHANNEL

• CANCELLATION BETWEEN VBF AND GG CHANNEL (SEPARATION WELL DEFINED DUE TO COLOR AT

TREE LEVEL, INTERFERENCE SMALL BEYOND IT)

• CANCELLATION CAN BE ENHANCED WHILE KEEPING SIZABLE SIGNAL BY CHOICES OF CUTS IN
pT , ∆ηjj

• DEFINE MEASURABLE MASS SHIFT: ∆m
γγ
H

≡ δm
γγ, INCL

H
− δm

γγ, VBF

H
:

SMALL BUT STRONGLY DEP. ON WIDTH, REASONABLE SIGNAL



THE STRONG COUPLING



THE VALUE OF αs
PDG VALUE (AUGUST 2014): αs(MZ) = 0.1185± 0.0006

• LATTICE UNCERTAINTY CURRENTLY ESTIMATED
BY FLAG (arXiv:1310.8555) TO BE TWICE THE

PDG VALUE (±0.0012)
(IF PDG WERE TO ADOPT THIS, COMBINED UN­
CERTAINTY LIKELY TO DOUBLE)

• IT IS AN AN AVERAGE OF AVERAGES

• SOME SUB­AVERAGES (E.G. DIS) INCLUDE MU­
TUALLY INCONSISTENT VALUES

• SOME SUB­AVERAGES (E.G. τ OR JETS) IN­
CLUDE DETERMINATIONS WHICH DIFFER FROM
EACH OTHER BY EVEN FOUR­FIVE σ

• AVERAGING THE TWO MOST RELIABLE VALUES

(GLOBAL EW FIT & τ , BOTH N3LO, NO DEP. ON

HADRON STRUCTURE) GIVES

αs = 0.1196± 0.0010

• LITTLE PROGRESS FOR MANY YEARS: PDG
1998­2006 ∆αs(MZ) = 0.002; PDG 2010­
2014 ∆αs(MZ) = 0.0006 ÷ 0.0008 (CHANGE

OF AUTHOR)

• UNLIKELY TO CHANGE ­ SHOULD DETERMINE αs
FROM HIGGS IN GLUON FUSION?

αs DETERMINATIONS IN PDG

αs AT THE LHEC

• COULD BE DETERMINED ACCURATELY AT THE LHEC OR AT A NEUTRINO FACTORY!



SUMMARY I

THEORETICAL PROGRESS IS KEEPING PACE WITH EXPERIMENTAL
PROGRESS:

• PDF DETERMINATION: UNCERTAINTIES

• NNLO AND BEYOND

• THRESHOLD RESUMMATION AS A TOOL FOR APPROXIMATE H.O.

• JET RESUMMATION, CHARACTERIZATION & DEFINITION

• OFF­SHELL

“...the period of the famous triumph of quantum field theory. And what a triumph it
was, in the old sense of the word: a glorious victory parade, full of wonderful things
brought back from far places to make the spectator gasp with awe and laugh with
joy” (Sydney Coleman, 1988)



SUMMARY II:

QCD IS NOT PLUMBING



EXTRAS



HIGGS IN GLUON FUSION:
RESUMMATION AMBIGUITIES

• LARGE SUBLEADING TERMS ⇒ LARGE AMBIGUITIES

• SCET RESUMMATION SMALLER, DUE TO 1/N TERMS (Bonvini, SF, Ridolfi, Rottoli)

• RESUMMATION EFFECTIVELY AMOUNTS TO APPROXIMATE HIGHER ORDERS

RESUMMED/UNRESUMMED RATIO (NO CONST. EXPONENTIATION)

note k factor computed wr to NNLO at respective scale

• De Florian, Grazzini (DFG) (HXSWG REFERENCE) RESUM lnN

• Becher, Neubert et al. (ABNY): SCET (z SPACE) APPROACH TO NNLL (REALLY N3LL*)

• Ball et al. (BBFMR): RESUM lnN , DIFFERS FROM DFG BECAUSE OF ‘ANALYTIC’
RESUMMATION (correct small-N singularities when expanded to finite order)

• BBFMR: N3LL ALSO AVAILABLE



Z+JET PRODUCTION

JET VETO RESUMMATION
VS. ISOLATION CRITERIA

• JET VETO RESUMMATION RECENTLY EXTENDED TO 0, 1­JET BINS FOR HIGGS PRODUCTION

• GAUGE BOSON+ JET “STANDARD CANDLE”; NNLO CALCULATION RECENTLY AVAILABLE (Boughezal,
Focke, Liu, Petriello, 2015)

• ATLAS DATA SURPRISINGLY AGREE WITH NLO RESULT: NO JET VETO?

• “GIANT K­FACTOR” (Rubin, Salam, Sapeta, 2010): ATLAS ISOLATION CRITERION ACCEPTS TWO­JET

EVENTS WITH ONE JET ALMOST COLLINEAR TO Z, COMPENSATES SUPPRESSION DUE TO JET VETO

• GOES AWAY WITH DIFFERENT JET ISOLATION CRITERION

(Boughezal, Focke, Liu, 2015)



N3LO PDFS:
• NEEDED AT THE 1% ACCURACY LEVEL

• IMPACT OF N3LO DEPENDS ON PROCESS:
– HIGGS GLUON FUSION: PERTURBATIVE DEP. OF PDF NEGLIGIBLE IN

COMPARISON TO MATRIX ELEMENT ⇒ N3LO NOT NEEDED

– TOP: PERTURBATIVE DEP. OF PDF SMALLER, BUT NOT NEGLIGIBLE IN
COMPARISON TO MATRIX ELEMENT, ANTICORRELATED TO IT

⇒ N3LO NECESSARY

SCALE UNCERTAINTY & DEP. ON PERTURBATIVE ORDER

HIGGS
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(s.f., Isgrò, Vita, 2014)

WHEN WILL WE HAVE THEM?

• N3LO DIS COEFFICIENT FUNCTIONS KNOWN

• BOTTLENECK: N3LO ANOMALOUS DIMENSIONS

• ANOMALOUS DIMENSIONS: LO: 1974; NLO: 1981; NNLO: 2004; N3LO: 2030?



HIGGS IN GLUON FUSION:
EXACT N3LO!

(Anastasiou et al, 2015)
(ATLAS, 2015)

• EXACT N3LO PUBLISHED IN PRELIMINARY FORM,
OBTAINED AS SERIES EXPANSION ABOUT THE SOFT LIMIT, IN POINTLIKE APPROX

• HAS THE SERIES CONVERGED?

• IN GOOD AGREEMENT WIH RESUMMATION!



THEORETICAL UNCERTAINTIES
NLO PDF UNC. VS NLO­NNLO SHIFT VS NLO CACCIARI­HOUDEAU (NNPDF2.1)
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THEORETICAL UNCERTAINTY ON NLO PDF IS ORDER 5% ⇒ COMPARABLE TO PDF UNCERTAINTY



THEORETICAL UNCERTAINTIES
NNLO PDF UNC. VS NLO­NNLO SHIFT VS NNLO CACCIARI­HOUDEAU (NNPDF2.1)
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THEORETICAL UNCERTAINTY ON NNLO PDF IS ORDER 1% ⇒ SMALLER THAN PDF UNCERTAINTY


