

Searches for charged Higgs bosons in $\ensuremath{\textit{pp}}$ collisions with the CMS and ATLAS detector

Pietro Vischia¹ (CMS) on behalf of the ATLAS and CMS collaborations

¹IST/LIP-Lisboa, with funding by FCT grant SFRH/BD/52067/2012 (IDPASC program)

LHCP 2015 - St. Petersburg, Aug 31→Sep 6

Outline

Importance of charged Higgs boson searches

Charged Higgs in WZ physics

Charged Higgs in top quark physics

 $\begin{array}{l} \mbox{Light charged Higgs} \\ tan\beta < 1 \\ tan\beta > 1 \end{array}$ Heavy charged Higgs

Summary

References

- A Higgs boson compatible with the SM one has been found at the LHC it might not be the only one!
- Multi-Higgs models might explain experimental observations
 - Baryon asymmetry: explicit and spontaneous CP violation.
 - Dark matter: dark matter candidates from doublets w/out a VEV
 - Neutrino oscillations: masses generated at ≥ 1 loop
- Minimal Supersymmetric Standard Model (MSSM) is the minimal extension: h, H, A, H⁺, H⁻
 - One characteristic parameter: $tan\beta$ (ratio of VeVs of neutral Higgses)
 - After h(125), Higgs sector can be described using only $m_{\rm H^+}$ and $tan\beta$: hMSSM [1]
 - No prediction \rightarrow need to scan full parameter phase space

- The discovery of a charged Higgs boson would be an unequivocal signal of new physics
- Main charged Higgs boson search channels
 - Vector boson fusion/decay
 - Cascade decays involving h⁰(125)
 - VBF production, decay to W[±]Z
 - Top quark production and decay
 - In top quark decays if $m^{}_{
 m H\pm}\,<\,m^{}_{top}$
 - Associated production t(b)H⁺ if $m_{\rm H^{\pm}} > m_{top}$

Multi-Higgs boson cascade Phys. Rev. D 89, 032002 [2]

- Assume h(125) Higgs boson, and no particular model for additional bosons
- $(W
 ightarrow \ell
 u)(W
 ightarrow q \overline{q}') b \overline{b}$ final states
- Selection: ≥ 4 jets (2 of them b-tagged), 1 lepton, E^{miss}
- Background determination: BDT trained for each signal mass using variables from cascade decay

Better exclusion limits at high mass

Observed limits greater than NNLO $(gg \rightarrow H^0 \text{ at SM rate})$ for all mass points

${\rm H^\pm} \rightarrow {\rm W^\pm Z}$ in vector boson fusion - 1/2 Phys. Rev. Lett. 114, 231801 (2015) [3]

- Decay allowed at tree level in Higgs Triplet Models
- Search for $(Z \to \ell^+ \ell^-)(W \to q \overline{q}') q \overline{q}'$ final states and M_{H^+} [200, 1000] GeV

 ${\rm H^\pm} \rightarrow {\rm W^\pm Z}$ in vector boson fusion - 2/2 Phys. Rev. Lett. 114, 231801 (2015) [3]

Exclusion limits

- Observed limits on $\sigma_{VBF} \times \mathcal{B}(H^{\pm} \rightarrow W^{\pm}Z)$ vary between 31 1020 fb
- 6 times better than ATLAS inclusive WZ search for $m_{
 m H^\pm} <$ 800 GeV

Interpretation in Higgs triplet model

- Georgi-Machacek triplet model
- s_H^2 : fraction of m_W^2 and m_Z^2 generated by the triplet v.e.v.
- $s_H^2 \propto {
 m cross}$ section and H^\pm width
- $\mathcal{B}(H^{\pm} \rightarrow W^{\pm}Z) = 1$ assumed (predicted to be very high when above $W^{\pm}Z$ threshold)

Searching for charged Higgs using top quarks

- H⁺ can be produced after top quark decays if $M_{\rm H^+} < M_t M_b$
- Tau or charmed final states expected depending on tanß

(from D0 Note 5715-CONF)

• H⁺ can be produced in association with top quarks if $M_{\rm H^+} > M_t - M_b$ 4FS similar to ttH production g 00000000000 \bar{t} \bar{t}

Searching for a light H⁺ tan β < 1: search with $c\bar{s}$ final states

H[±] decay

 $\rightarrow t^*b$ $\rightarrow W^{\pm}\Delta^0$

 $H^{\pm} \rightarrow W^{\pm}h^{0}$

····· B(t→ Hb)

(from D0 Note 5715-CONF)

10

 $H^{\pm} \rightarrow CS$ $H^{\pm} \rightarrow \tau v$ $m_{H^2} = 100 \text{ GeV/c}^2$

tan B

(Plots from [9]) Charged Higgs searches at LHC

Vischia

Branching Ratio

0.8

0.6

0.4

0.2

0

Light H⁺ w/ $tan\beta < 1$: $c\bar{s}$ decay mode in ℓ +jets final state

- Selection (ATLAS): = 1 lepton (e, μ), ≥ 4 jets, ≥ 2 b-tagged jets, E^{miss}_T, M_T(ℓ, E^{miss}_T)
- Selection (CMS): ≥ 1 lepton, veto additional loose leptons, ≥ 4 jets, ≥ 2 b-tagged jets, E^{miss}_T
- W/Z mass reconstruction: separate signal from tī main background through final state

reconstruction Eur. Phys. J. C, 73 6 (2013) 2465 [4]

CMS-HIG-13-035 [9]

Searching for a light H^{\pm} when $tan\beta > 1$

- For $m_{
 m H^+} < m_{top}, \, {
 m H^+} o au^+
 u_ au$ decay mode is dominant for any taneta
- The most sensitive final state is τ_h +jets
- $\mu \tau_h$ final state contributed at 7 TeV [7], but is not competitive at 8 TeV

Searching for a heavy H^{\pm}

- In most of the MSSM models, $\frac{\mathcal{B}(\mathrm{H}^+ \to t\bar{b})}{\mathcal{B}(\mathrm{H}^+ \to \tau^+ \nu_{\tau})} > 5$ for $tan\beta > 8$
- ${
 m H}^+
 ightarrow t ar{b}$ decay mode probed via μau_h , dilepton, and ℓ +jets final states
 - Extra b-jet multiplicity and changes in $t\bar{t}$ kinematics and acceptance enhance sensitivity to ${\rm H^+}$ in production of $t\bar{b}$
- $H^+ \rightarrow \tau^+ \nu_{\tau}$ decay mode probed mainly via τ_h +jets ($\mu \tau_h$ and dilepton far less sensitive, ℓ +jets not studied)

 $\tau_h\text{+jets}$ final state

- CMS (arXiv:1508.07774 [8]): 1 τ_h , \geq 3 jets, veto leptons, E_T^{miss}
- ATLAS (JHEP03 (2015) 088 [5]): 1τ_h, ≥ 4(3) jets (low(high)-mass), veto leptons, ≥ 1 b-tagged jets, E^{miss}_T
- Dominant backgrounds (EWK and multijets): measured from data
- Multijet background control: via fit in control region (ATLAS, CMS) and angular cuts (CMS)
- Model independent: decay modes other than $H^+ \rightarrow \tau^+ \nu_{\tau}$ included in data driven estimate

12/19

τ_h +jets final state - results

- CMS has better sensitivity in the central mass range $m_{
 m H^+}=90-400~
 m GeV$
- ATLAS has better sensitivity for $m_{
 m H^+} <$ 90 GeV and in the high mass range $m_{
 m H^+} >$ 400 GeV

arXiv:1508.07774 [8]

Charged Higgs searches at LHC

τ_h +jets final state - interpretations

- Model-independent upper limits are computed for $\mathcal{B}(t \to H^+ b) \times \mathcal{B}(H^+ \to \tau \nu)$
- Limits are then interpreted as exclusion region in $(m_{\rm H^+} tan\beta)$ plane for the $m_{\rm h}^{mod-}$ scenario
- Not much space left available in the parameter space for low mass. $tan\beta \le 1$ excluded for
 - $m_{
 m H^+} <$ 250 GeV

arXiv:1508.07774 [8]

τ_h +jets final state results - interpretations

- Low- $M_{\rm H}$ scenario with $m_A = 110$ GeV completely excluded (CMS [8])
- Completely excluded also by ATLAS [5]

$\mu \tau_h$ and ℓ +jets final states (CMS: arXiv:1508.07774 [8])

- $\mu \tau_h$ final state: more sensitive to ${\rm H}^+ o \tau^+ \nu_{\tau}$ decay mode
 - Offline selection: 1 isolated muon, veto loose leptons, ≥ 2 jets, E_T^{miss}, ≥ 1 b-tags, 1τ_h, opposite sign
 - Backgrounds: misidentified τ_h component estimated from data
 - Improved estimation of the tau fake rate by fully accounting for quark/gluon composition in the sample

 H_T , split in = 1/ \geq 2 b-tags: better sensitivity for ℓ +jets

• ℓ +jets final state: sensitive to $H^+ \rightarrow t\bar{b}$ decay mode

- Selection: 1 lepton (e, μ), \geq 2 jets, \geq 1 b-tagged jets, $E_{T}^{miss} \geq$ 20 GeV
- Backgrounds: tī, W + c/b, W+light flavours determined via simultaneous fit from data
- Insensitive to the ${\rm H}^+
 ightarrow \tau^+ \nu_{ au}$ decay mode

- More sensitive to $H^+ \rightarrow t\bar{b}$ decay mode
 - Selection: $1e\mu$ pair, > 2 jets, veto low $e\mu$ masses, opposite sign
 - Backgrounds: large irreducible tt, minor single top and Drell-Yan contamination
 - Tighter $N_{b \ tags}$ requirement yields better sensitivity to $H^+ \rightarrow t\bar{b}$ decay mode than the $\mu \tau_h$ final state

N_{b-taas} : better sensitivity for dilepton

Single-contributing channel approach: $\mu \tau + e\mu + ee + \mu\mu + \ell$ +jets CMS: arXiv:1508.07774 [8]

- Each channel is allowed to contribute exclusively
- Assume that one of them has $\mathcal{B}=1$ and the other has $\mathcal{B}=0$
- First direct search ever for $H^+ \rightarrow tb$ decay mode (CMS)

arXiv:1508.07774 [8]

Summary

- Charged Higgs boson searched for in a large spectrum of production/decay modes
- Vector boson fusion/decay and cascade decays involving h(125)
 - $\sigma(gg \rightarrow H^0) \times \mathcal{B}(H^0 \rightarrow W^{\mp}H^{\pm} \rightarrow W^{\pm}W^{\mp}h^0 \rightarrow W^{\pm}W^{\mp}b\overline{b}) \leq 0.065 43 \text{ pb (ATLAS [2])}$
 - $\sigma_{\textit{VBF}} \times \mathcal{B}(\mathrm{H}^{\pm} \rightarrow \mathrm{W}^{\pm}\mathrm{Z}) \leq 31 1020 \text{ fb} \text{ (ATLAS [3])}$
- Charged Higgs boson in top quark production/decay modes
- $H^+ \rightarrow c\bar{s}$ decay mode: Low $tan\beta$: $\mathcal{B}(t \rightarrow H^+b) \leq 4 2\%$ (ATLAS [4], CMS [9])
- $H^+ \rightarrow \tau^+ \nu_{\tau}$ decay mode: τ_h +jets final state has the best sensitivity
 - Low $m_{\rm H^+}$: ${\cal B}({
 m t} o {
 m H^+}{
 m b}) imes {\cal B}({
 m H^+} o { au^+}{
 u_ au}) \le 1 0.1\%$ (ATLAS [5], CMS [8])
 - ATLAS more sensitive in the tails, CMS more sensitive for $m_{
 m H^+}=90-400~{
 m GeV}$
- $H^+ \rightarrow t\bar{b}$ decay mode: first direct search ever for this decay mode (CMS [8])
 - $\sigma(pp \rightarrow \overline{t}(b)H^+) \le 4 0.5 \text{ pb} \text{ (assuming } \mathcal{B}(H^+ \rightarrow t\overline{b}) = 1)$
- ${
 m H}^+
 ightarrow au^+
 u_{ au}$ and ${
 m H}^+
 ightarrow tar{b}$ results interpreted in MSSM scenarios
 - Phase space for $m_{
 m h}^{max}$ and $m_{
 m h}^{mod\pm}$ severely constrained
 - $tan\beta \leq 1$ ruled out for $m_{\rm H^+} \stackrel{_{\scriptstyle \sim}}{_{\scriptstyle \sim}} 250~{\rm GeV}$
 - low-M_H scenario completely ruled out (ATLAS [5], CMS [8])
- Charged Higgs not found (yet ©): stay tuned for 13 TeV new exciting searches!

THANKS FOR THE ATTENTION

Awesome russian cat from a cafeteria 5 minutes from here

References I

Djouadi, A., Maiani, L., Moreau, G., Polosa, A., Quevillon, J., Riguer, V. The post-Higgs MSSM scenario: habemus MSSM? The European Physical Journal. C, Particles and Fields, 73(12), 2650. [doi:10.1140/epjc/s10052-013-2650-0]

ATLAS Collaboration..

Search for a multi-Higgs-boson cascade in $W^+W^-b\overline{b}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV Phys. Rev. D, 89 032002. [doi:10.1103/PhysRevD.89.032002]

ATLAS Collaboration.

Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay $H^{\pm} \rightarrow W^{\pm}Z$ using pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Experiment Phys. Rev. Lett. 114. 231801 (2015). [doi:10.1103/PhysRevLett.114.231801]

ATLAS Collaboration.

Search for a light charged Higgs boson in the decay channel $H^+ \rightarrow c\bar{s}$ in t events using pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector The European Physical Journal C 73 6 (2013) 2465.

ATLAS Collaboration.

Search for charged Higgs bosons decaying via *chiggspm* $\rightarrow \tau^{\pm} \nu$ in fully hadronic final states using pp collision data at $\sqrt{s} = 8 TeV$ with the ATLAS detector Journal of High Energy Physics 03 (2015) 88. [doi:10.1007/JHEP03(2015)088]

References II

CMS Collaboration.

Search for a light charged Higgs boson in top quark decays in *pp* collisions at $\sqrt{s} = 7$ TeV Journal of High Energy Physics, 07 (2012) 143.

CMS Collaboration

Updated search for a light charged Higgs boson in top quark decays in *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$ CMS-PAS-HIG-12-052, [CDS:1502246]

CMS Collaboration,

Search for a charged Higgs boson in pp collisions at $\sqrt{s} = 8$ TeV Submitted to J. High Energy Phys. [arXiv:1508.07774]

CMS Collaboration

Search for H⁺ to cs-bar decay CMS-PAS-HIG-13-035, [CDS:1728343]

Roy, D.P. Looking for the charged Higgs boson doi Mod. Phys. Lett, A19, 1813-1828, 2004 [arXiv:hep-ph/0406102]

CMS Collaboration

8 TeV Jet Energy Corrections and Uncertainties based on 19.8 fb⁻¹ of data in CMS CMS-DP-2013-033, [CDS:1627305]

References III

CMS Collaboration

Jet Energy Corrections and Uncertainties. Detector Performance Plots for 2012. CMS-DP-2012-012, [CDS:1460989]

CMS Collaboration CMS Particle Flow and Tau Identification Results https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsPFT

CMS Collaboration Performance of quark/gluon discrimination in 8 TeV pp data CMS-PAS-JME-13-002, [CDS:1599732]

BACKUP SLIDES