
Event by Event Flow

in ATLAS and CMS

Gregor Herten

Universität Freiburg, Germany

LHCP 2015

St. Petersburg, 31.8.-5.9.2015



Gregor Herten, LHCP 2015

Some basic heavy-ion physics terminology
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Centrality and Glauber Model
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Centrality in A+A: 
impact parameter cannot be directly 
measured and has to be estimated 
from measurements of Nch, ET, ZDC, ..

Centrality is typically expressed as a % 
fraction of the total geometrical cross 
section: central is 0% centrality.

Glauber Model: 
connects centrality to the number of 
binary collisions (Ncoll) and nucleon 
participants (Npart)
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Modelling Primordial Fluctuations
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MC-Glauber: Event-by-event fluctuations due to sampling of nucleon positions.
Soft particle production proportional to the density of participating 
nucleons. Initial entropy is proportional to number of participating 
nucleons and number of binary collisions. 

MC-KLN:

IP-Glasma: This model builds on the IP-Sat (impact parameter–dependent saturation) 
model to generate finite, deformed, fluctuating initial gluon field 
configurations in the transverse plane (longitudinal fluctuations are not
yet included). 

DIPSY: MC event generator, based on gluon radiation from colored 
dipoles (via dipole splitting), that uses BFKL evolution.

These initial fluctuations are then evolved through nonlinear viscous 
hydrodynamics into the final-state particle flow. 

Entropy production is determined by initial gluon production,
calculated from structure function or participating nucleons.
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Anisotropic Flow
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Li Yan, Stony Brook

v2 elliptic flow 
- due to initial asymmetry

v3 and higher orders
- due to initial fluctuations

Event plane angles Ψn characterize the
direction of maximum particle density
in the event. 

1 Introduction

Azimuthal distribution of emitted particles:

dN

d�
⇠ 1 + 2

X

n

vn cos[n(�� n)],

where � is the azimuthal angle of produced particles, vn are the Fourier coe�cients, characterizing

the strength of the anisotropic flow.  n is the ’event plane’ angle, the direction of the maximum

final-state particle density.
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Fourier transform of azimuthal angle
distribution Φ.
Fourier coefficients vn

Event plane angles Ψn 
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1 Introduction

Following the paper Collective phenomena in non-central nuclear collisions, Sergei A. Voloshin, Arthur
M. Poskanzer, and Raimond Snellings, arXiv:0809.2949v2, 30 Oct 2008

The main interest in anisotropic flow is due to its sensitivity to the system properties very early in

its evolution. The origin of anisotropies in the particle momentum distributions lies in the initial

asymmetries in the geometry of the system. Because the spatial asymmetries rapidly decrease with

time, anisotropic flow can develop only in the first fm/c. Based on this, one can conclude that

anisotropic flow must be sensitive to the particle interactions very early in the system evolution,

information usually available only via weakly interacting probes. Constituent rescattering is by far

the most common explanation of anisotropic flow.

Definitions: The reaction plane is spanned by the vector of the impact parameter and the beam

direction. Its azimuth is given by  RP .

The particle azimuthal distribution measured with respect to the reaction plane is not isotropic; so it

is customary to expand it in a Fourier series

E
d3N

d3p
=

1

2⇡

d2N

pTdpTdy
(1 +

X

n

2⌫n cos[n(�� RP )])

where the vn =< cos[n(�i RP )] > coe�cients are used for a quantitative characterization of the event

anisotropy, and the angle brackets mean an average over all particles in all events.

The reaction plane is defined from the geometrical overlap region. Inside this region one has the

participants of the collision. Due to statistical fluctuations the participants define a region, which

fluctuates event-by-event (EbE) around the geometrical region. The azimuthal angle of the participant

plane (spanned by collision direction of minor axis of participant ellipse) is �n

Azimuthal distribution of emitted particles:

dN

d�
⇠ 1 + 2

X

n

vn cos[n(�� EP,n)],

where � is the azimuthal angle of produced particles, vn are the Fourier coe�cients, characterizing

the strength of the anisotropic flow.  n is the ’event plane’ angle, the direction of the maximum

final-state particle density.
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Event plane method,
Scalar product method:

General Prob. distribution

1 Introduction

Following the paper Collective phenomena in non-central nuclear collisions, Sergei A. Voloshin, Arthur
M. Poskanzer, and Raimond Snellings, arXiv:0809.2949v2, 30 Oct 2008
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its evolution. The origin of anisotropies in the particle momentum distributions lies in the initial

asymmetries in the geometry of the system. Because the spatial asymmetries rapidly decrease with

time, anisotropic flow can develop only in the first fm/c. Based on this, one can conclude that
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information usually available only via weakly interacting probes. Constituent rescattering is by far

the most common explanation of anisotropic flow.
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fluctuates event-by-event (EbE) around the geometrical region. The azimuthal angle of the participant

plane (spanned by collision direction of minor axis of participant ellipse) is �n

The most general information about event flow is contained in the combined probability distribu-

tion

p(⌫n, ⌫m, ...,�n,�m, ...) =
1

Nevts

dNevts

d⌫n, d⌫m, ..., d�n, d�m, ...

The aim is to reduce this complexity and to use projections of this multi-dimensional prob-distribution.

Azimuthal distribution of emitted particles:

dN

d�
⇠ 1 + 2

X

n

vn cos[n(�� EP,n)],

where � is the azimuthal angle of produced particles, vn are the Fourier coe�cients, characterizing

the strength of the anisotropic flow.  n is the ’event plane’ angle, the direction of the maximum

final-state particle density.
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One measures projections of this general prob-distribution:

Multi-particle correlations: 

e.g. 2 PC

2-PC 4-PC
Lee-Yang Zero
(All-Particle Correlation)
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Azimuthal distribution of emitted particles:

dN

d�

⇠ 1 + 2

X

n

vn cos[n(�� EP,n)],

where � is the azimuthal angle of produced particles, vn are the Fourier coe�cients, characterizing

the strength of the anisotropic flow.  n is the ’event plane’ angle, the direction of the maximum

final-state particle density.

Multi-particle correlations

dN

pair

d��

⇠ 1 + 2

X

n

Vn� cos(n��)

1.1 Cumulants

hh2kii = corrn{2k}i = hhein(�1+...+�k��k+1�...��{2k})ii = hvn{2k}2ki
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Cumulant method:
The idea of using 2k-particle cumulants is to suppress the non-flow 
contribution by eliminating the correlations which act between fewer than 
2k particles.

Correlations of 2k particles: 

1 Introduction
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J. Jia 2014 J. Phys. G: Nucl. Part. Phys. 41 124003
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Figure 9
(a) The centrality dependence of vn{2} from 2.76 A TeV Pb+Pb collisions, measured by the ALICE Collaboration (103), compared
with viscous hydrodynamic model calculations (71). (b) Comparison between vn(pT ) for the same collision system at 20–30% centrality
from the ATLAS Collaboration (134) and hydrodynamical calculations that use both a constant average and a temperature-dependent
η/s . Modified with permission from Reference 71.

produced particles. Physicists recently realized that novel long-range correlations first observed
at RHIC, known as the ridge and the Mach cone, are, in fact, manifestations of anisotropic flow
(24, 103, 133).

Because the created matter distribution in a collision is inhomogeneous, n covers a wide range
(Figure 2). However, the shear viscosity reduces differences between the expansion velocities and
therefore dampens the anisotropic flow coefficients vn—and does so more strongly for larger n.
As a consequence, the magnitude and the transverse momentum dependence of the vn coeffi-
cients provide a large set of observables (103, 134–137) with which to check the hydrodynamical
paradigm; they are, within this description, very sensitive to the magnitude of η/s (69, 138).

Figure 9a shows the measured v2, v3, and v4 as functions of centrality (71). These coefficients
form the flow power spectrum created by hydrodynamics in response to the initial fluctuation
power spectrum shown in Figure 2. pT -integrated charged hadron flow coefficients for n = 1
and n > 4 are not yet available experimentally but have been predicted theoretically (71) and are
expected to complement the Little Bang power spectrum in the near future. Clearly, v3 and v4

have a rather weak centrality dependence, whereas v2 changes rapidly. This finding mirrors the
spectrum of εn in Figure 2, which also shows the strongest centrality dependence for n = 2.
Within hydrodynamics, the initial εn power spectrum, together with the shear viscosity (η/s )(T ),
completely determines the centrality and pT dependences of the anisotropic flow coefficients vn,
as well as their event-by-event fluctuations. The IP-Glasma initial conditions (81), together with
an average value for η/s of 0.2 for Pb+Pb collisions at the LHC and a somewhat smaller value
of 0.12 for Au+Au collisions at top RHIC energies, provide a good description of all presently
available data for charged hadron vn and vn(pT ) (71). Figure 9 provides examples. As discussed in
Reference 71, the measurements at both collision energies are also compatible with a temperature-
dependent specific shear viscosity, (η/s )(T ) (126), that has a minimum value of 1

4π
= 0.08 at Tc

and rises moderately above and more steeply below Tc [see the two curves compared with v2(pT )
data in Figure 9b]. However, initial fluctuation power spectra obtained from the MC-Glauber
and MC-KLN models (Figure 2) cannot reproduce the measured flow power spectrum (C. Shen
& Z. Qiu, private communication; see also the related discussion in Reference 139). Although
a good simultaneous description of charged hadron v2 and v3 can be obtained with η/s = 0.08

142 Heinz · Snellings
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Heinz, Snelling, Ann.Rev.Nucl.Part.Sci. 63 (2013) 123-151 
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ATLAS, JHEP 11 (2013) 183

Probability distribution of EbyE vn for several centrality bins.  The 
shaded bands indicate the uncertainty on the vn-shape. 

Solid lines: Bessel-Gaussian function based on measurement of <vn> 
for the fluctuation-only scenario. 
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Figure 14. The probability density distributions of v2 for pT > 0.5 GeV in several centrality
intervals, together with fits to the Bessel–Gaussian function eq. (1.4). The fits for the 0–1% and 1–
2% centrality intervals are not shown but they can be well described by a Bessel–Gaussian function
with vRP

2 = 0 (see discussion for figure 10). The ⟨Npart⟩ value for each centrality range is given in
table 1.

distributions. The vRP
2 value is always smaller than the value for ⟨v2⟩, and it decreases to

zero in the 0–2% centrality interval, consistent with the results shown in figure 10. The

value of δ
v2

is close to σ
v2

except in the most central collisions. This behaviour leads to a

value of δ
v2
/vRP

2 larger than σ
v2
/⟨v2⟩ over the full centrality range as shown in the right

panel of figure 15. The value of δ
v2
/vRP

2 decreases with ⟨Npart⟩ and reaches a minimum of

0.38± 0.02 at ⟨Npart⟩ ≈ 200, but then increases for more central collisions. The two points

for the 0–1% and 1–2% centrality intervals are omitted as the corresponding vRP
2 values

are consistent with zero.

According to eq. (1.5), when the relative fluctuations are small the value of ⟨vn⟩ can

be approximated by:

⟨vn⟩ ≈
√

(vRP
n )2 + δ2

vn
. (5.1)

– 24 –

Deviations 
for v2 from
Bessel-
Gaussian
function
at mid-central
and
peripheral
collisions

ATLAS
JHEP 11(2013) 183
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Comparison of different vn measurements 
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Eur. Phys. J. C (2014) 74:3157 Page 11 of 28 3157

Fig. 9 The ratio of v2{6} and v2{8} to v2{4} as a function of the average
number of participating nucleons, ⟨Npart⟩, for elliptic flow coefficients
obtained from the cumulant method (left) and calculated from the mea-

sured p(v2) distribution [17] (right). The error bars denote statistical
and systematic errors added in quadrature. The ratio symbols are shifted
horizontally with respect to each other for clarity

Fig. 10 Comparison of the ⟨Npart⟩ dependence of the v2 (top left), v3 (top right) and v4 (bottom) harmonics measured with different methods, with
vn{EbyE} denoting the mean value of the corresponding p(vn). The error bars denote statistical and systematic uncertainties added in quadrature

(vcalc
n {6, EbyE})6 ≡ (⟨v6

n⟩ − 9⟨v4
n⟩⟨v2

n⟩ + 12⟨v2
n⟩3)/4, (13)

(vcalc
n {8, EbyE})8 ≡ −(⟨v8

n⟩ − 16⟨v6
n⟩⟨v2

n⟩ − 18⟨v4
n⟩2)/33

−(144⟨v4
n⟩⟨v2

n⟩2 − 144⟨v2
n⟩4)/33. (14)

ATLAS has measured p(vn) for n = 2, 3, 4 [17]. The
comparison of v2{2k} obtained with the cumulant method to
vcalc

2 {2k, EbyE} is shown in Fig. 8. Good agreement between
the two independent measurements is seen. The cumulant
method gives v2 values larger than those calculated from
the p(v2) distribution only for v2{2} measured in the most
peripheral collisions, due to contributions from short-range
two-particle correlations in the former. The ratios of v2{6}

and v2{8} to v2{4} are shown in Fig. 9. The left panel shows
results from the cumulant method. The ratios are system-
atically below unity, most significantly at low Npart. This
effect, which is of the order of 1–2 %, is significant for the
ratio v2{6}/v2{4} while it is within the present uncertainty of
the cumulant measurements for v2{8}/v2{4}. Better precision
is achieved for vcalc

2 {2k, EbyE} (right panel of Fig. 9). The
difference between v2{4} and v2{6} or v2{8} is attributed to
the non-Bessel–Gaussian character of the p(v2) distribution
measured in peripheral collisions [17].

It is interesting to compare flow harmonic measurements
obtained with different methods, which have different sensi-
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ATLAS has measured p(vn) for n = 2, 3, 4 [17]. The
comparison of v2{2k} obtained with the cumulant method to
vcalc

2 {2k, EbyE} is shown in Fig. 8. Good agreement between
the two independent measurements is seen. The cumulant
method gives v2 values larger than those calculated from
the p(v2) distribution only for v2{2} measured in the most
peripheral collisions, due to contributions from short-range
two-particle correlations in the former. The ratios of v2{6}

and v2{8} to v2{4} are shown in Fig. 9. The left panel shows
results from the cumulant method. The ratios are system-
atically below unity, most significantly at low Npart. This
effect, which is of the order of 1–2 %, is significant for the
ratio v2{6}/v2{4} while it is within the present uncertainty of
the cumulant measurements for v2{8}/v2{4}. Better precision
is achieved for vcalc

2 {2k, EbyE} (right panel of Fig. 9). The
difference between v2{4} and v2{6} or v2{8} is attributed to
the non-Bessel–Gaussian character of the p(v2) distribution
measured in peripheral collisions [17].

It is interesting to compare flow harmonic measurements
obtained with different methods, which have different sensi-

123

Comparisons of vn measurements
using different methods.  

Tendency:
vn{2} > vn{EP} > vn{EbyE} > vn{4}

ATLAS, Eur. Phys. J. C (2014) 74:3157
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Figure 2: The v2 values as a function of Noffline
trk . Open data points are published two- and four-

particle v2 results [35]. Solid data points are v2 results obtained from six- and eight-particle
cumulants, and LYZ methods, averaged over the particle pT range of 0.3–3.0 GeV/c, in PbPb atpsNN = 2.76 TeV (left) and pPb at psNN = 5.02 TeV (right). Statistical and systematic uncertain-
ties are indicated by the error bars and shaded regions, respectively.

in pPb collisions at psNN = 5.02 TeV. The v2{2} and v2{4} data are taken from previously pub-
lished CMS results [35]. The solid curves correspond to theoretical predictions for both large
and small systems based on hydrodynamics and the assumption that the initial-state geome-
try is purely driven by fluctuations [50]. The ratios from PbPb collisions are also shown for
comparison. Note that the geometry of very central PbPb collisions might be dominated by
fluctuations, but for these semi-peripheral PbPb collisions the lenticular shape of the overlap
region should also strongly contribute to the v2 values. The CMS pPb data are consistent with
the predictions within statistical and systematic uncertainties. The systematic uncertainties in
the ratios presented in Fig. 3 are estimated to be 2.4% for v2{4}/v2{2} for both pPb and PbPb
collisions, 1% for v2{6}/v2{4} in pPb and PbPb collisions, and 3.6% and 1% for v2{8}/v2{6}
in pPb and PbPb collisions, respectively. Since they are all derived from the same data, the
systematic uncertainties for the different cumulant orders are highly correlated and therefore
partially cancel in the ratios.

Recently, other theoretical models based on quantum chromodynamics, and not involving hy-
drodynamics, have also been suggested to explain the observed multi-particle correlations in
pPb collisions [52, 53]. Unlike the descriptions based on hydrodynamic behavior, these models
do not require significant final-state interactions among quarks and gluons. They suggest sim-
ilar values for v2{4}, v2{6}, v2{8}, and v2{LYZ}, without yet, however, providing quantitative
predictions.

In summary, multi-particle azimuthal correlations among six, eight, and all particles have been
measured in pPb collisions at psNN = 5.02 TeV by the CMS experiment. The new measure-
ments extend previous CMS two- and four-particle correlation analyses of pPb collisions and
strongly constrain possible explanations for the observed correlations. A direct comparison of
the correlation data for pPb and PbPb collisions is presented as a function of particle multi-

v2 signal also in pPb:

v2{2} > v2{4}≈v2{6}≈v2{8}≈v2{LYZ}  ± 2% (PbPb)  ± 10% (pPb)  

CMS, PRL 115 (2015) 012301

CMS uses multi-particle correlation techniques to measure flow and
event-by-event fluctuations.  
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FIG. 1: (Color online) The distributions of the magnitude of the flow vector, q2 (left panel) and q3 (right panel), calculated
in the FCal via Eq. (7) in the 1% most central collisions. The vertical lines indicate the boundaries of the fifteen qm ranges,
each containing a fraction of events as indicated.

p

T

> 0.8 GeV. However, the e�ciency varies more strongly with ⌘ and event multiplicity [31]. For p
T

> 0.8 GeV, it
ranges from 72% at ⌘ ⇡ 0 to 57% for |⌘| > 2 in peripheral collisions, while it ranges from 72% at ⌘ ⇡ 0 to about 42%
for |⌘| > 2 in central collisions.

IV. DATA ANALYSIS

A. Event-shape selection

The ellipticity or triangularity in each event is characterized by the so-called “flow vector” calculated from the
transverse energy (E

T

) deposited in the FCal [14, 39]:

q
m

= q

m

e

im 

obs

m =
⌃w

j

e

�im�j

⌃w
j

� hq
m

i
evts

, m = 2 or 3 (7)

where the weight w
j

is the E

T

of the j

th tower at azimuthal angle �

j

in the FCal. Subtraction of the event-averaged
centroid hq

m

i
evts

in Eq. (7) removes biases due to detector e↵ects [40]. The angles  obs

m

are the observed event
planes, which fluctuate around the true event planes �

m

due to the finite number of particles in an event. A standard
technique [41] is used to remove the small residual nonuniformities in the distribution of  obs

m

. These procedures are
identical to those used in several previous flow analyses [11, 13, 14, 40]. To reduce the detector nonuniformities at
the edge of the FCal, only the FCal towers whose centroids fall within the interval 3.3 < |⌘| < 4.8 are used.

The q
m

defined above is insensitive to the energy scale in the calorimeter. In the limit of infinite multiplicity it
approaches the E

T

-weighted single-particle flow:

q
m

!
Z

E

T

v
m

(E
T

)dE
T

� Z
E

T

dE

T

. (8)

Hence the q

m

distribution is expected to follow closely the v

m

distribution, except that it is smeared due to the
finite number of particles. Figure 1 shows the distributions of q

2

and q

3

in the 0–1% most central collisions. These
events are first divided into ten q

m

intervals with equal number of events. Since the intervals at the highest and
lowest q

m

values cover much broader ranges, they are further divided into five and two smaller intervals, respectively,
resulting in a total of fifteen q

m

intervals containing certain fractions of events. Starting at the low end of the q

m

distribution, there are two intervals containing a fraction 0.05 (labeled 0.95–1 and 0.9–0.95), eight intervals containing
0.1, three containing 0.025, one containing 0.015, and one containing 0.01 (this last interval spans the highest values
of q

m

). These fifteen intervals are defined separately for each 1% centrality interval, and are then grouped together
to form wider centrality intervals used in this analysis (see Table I). For example, the first q

m

interval for the 0–5%
centrality interval is the sum of the first q

m

interval in the five centrality intervals, 0–1%, 1–2%,..., 4–5%. The default
analysis uses fifteen nonoverlapping q

m

intervals defined in Fig. 1. For better statistical precision, sometimes they are
regrouped into wider q

m

intervals.

where wj is the ET of the jth tower at azimuthal angle φj in the FCAL. 
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Correlation of v2 and v3  for two pT bins. 
Values are calculated in fourteen 5% centrality bins in the range 0-70%. 
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Fourteen 5% centrality bins.
No shape selection.
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G. AAD et al. PHYSICAL REVIEW C 90, 024905 (2014)

FIG. 10. (Color online) Comparison of six two-plane correlators, ⟨cos(!")⟩, with !" = jk("n − "m), with results from the AMPT
model calculated via the SP method (solid lines) and the EP method (dashed lines) from Ref. [37]. The error bars on the lines represent the
statistical uncertainties in the calculation.

v5 signal [5,44]:

v5e
i5"5 = α5ϵ5e

i5"∗
5 + α2,3,5ϵ2e

i2"∗
2ϵ3e

i3"∗
3 + · · ·

= α5ϵ5e
i5"∗

5 + β2,3,5v2v3e
i(2"2+3"3) + · · · . (25)

The coupling between v5 and v2v3 explains qual-
itatively the centrality dependence of the correlator
⟨cos(2"2 + 3"3 − 5"5)⟩.

A multiphase transport (AMPT) model [46] is frequently
used to study the harmonic flow coefficients vn and to study
the relation of vn to the initial geometry. The AMPT model

combines the initial-state geometry fluctuations of the Glauber
model and final-state interactions through a parton and hadron
transport model. The AMPT model generates collective flow
by elastic scatterings in the partonic and hadronic phase and
was shown to reproduce the vn values [47] and the particle
multiplicity [48] reasonably well. As a full event generator,
the AMPT model allows the generated events to be analyzed
with the same procedures as in the data. Figures 10 and 11
compare some selected correlators (six two-plane correlators
and four three-plane correlators) with a prediction [37] from
the AMPT model. Good agreement is observed between

FIG. 11. (Color online) Comparison of four three-plane correlators, ⟨cos(!")⟩, with !" = cnn"n + cmm"m + chh"h, with results from
the AMPT model calculated via the SP method (solid lines) and the EP method (dashed lines) from Ref. [37]. The error bars on the curves
represent the statistical uncertainties in the calculation.

024905-14

Solid line: scalar product method
Dashed line: event plane method

PHYSICAL REVIEW C 90, 024905 (2014) 

ATLAS, Phys. Rev. C 90, 024905 (2014) 
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CMS uses multi-particle correlations to study factorization breaking 
effects which are due to initial state fluctuations. These measurements 
provide information about event-plane fluctuations.
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pT dependent factorization 
ratio as function of pTa-pTb

in bins of pTa for different 
centrality ranges in PbPb. 

Comparison with
MC-Glauber : dashed line
MC-KLN: solid green line 

Factorization breaking at
high pTa and high pTa-pTb

CMS, arXiv:1503.01692
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pT dependent factorization 
ratio as function of pTa-pTb

in bins of pTa for different 
centrality ranges in PbPb. 

Comparison with
MC-Glauber : dashed line
MC-KLN: solid green line 

Factorization breaking at
high pTa and high pTa-pTb

CMS, arXiv:1503.01692
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rn vs. centrality
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The pT-dependenct 
factorization ratios
as function of event 
multiplicity.

Breakdown of
factorization observed
in r2 for centrality < 5%. 

For r3 factorization holds 
at the 2-3% level. 

No MC calculation 
can describe data over full
centrality range. 

CMS, arXiv:1503.01692
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CMS: Pseudo-Rapidity Factorization Breakdown
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Study of longitudinal fluctuations
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CMS: r2(ηa, ηb) in PbPb
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Factorization breaking effects below 5% 
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CMS: r3(ηa, ηb) in PbPb
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r3 is more sensitive to longitudinal fluctuations than r2
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16 5 Pseudorapidity dependence of factorization breakdown
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Figure 10: Similar distributions as shown in Fig. 9, but for the factorization ratio r3.

aη
0.0 0.5 1.0 1.5 2.0

)b η,a η( 4r

0.85

0.90

0.95

1.00

0-0.2% centrality

 = 2.76 TeVNNsCMS PbPb 

 < 5.0bη4.4 < 
 < 4.0bη3.0 < 

Exponential fits

aη
0.0 0.5 1.0 1.5 2.0

)b η,a η( 4r
0.85

0.90

0.95

1.00

0-20%

 < 3.0 GeV/ca
T

0.3 < p
 > 0 GeV/cb

T
p

aη
0.0 0.5 1.0 1.5 2.0

)b η,a η( 4r

0.85

0.90

0.95

1.00

20-60%

Figure 11: Similar distributions as shown in Fig. 9, but for the factorization ratio r4 in fewer
centrality ranges.

data. By plugging Eq. (11) into Eq. (9), the rn can be expressed as

rn(h
a, hb) ⇡ e�2Fh

n ha
, (12)

which is independent of hb, consistent with the results in Figs. 9–11. According to Eqs. (11)
and (12), the rn(ha, hb) also corresponds to a measurement of event plane fluctuations between
Yn(ha) and Yn(�ha),

rn(h
a, hb) ⇡ hcos [Yn(�ha)� Yn(h

a)]i . (13)

The r2 data for 4.4 < hb < 5.0 are well fit with a functional form given by Eq. (12) for most
centrality classes (c2/(degree of freedom) ⇠1), except for 0–0.2% centrality, where the r2 value
deviates from unity much faster as ha increases. Note that the parameter, Fh

n , is purely empir-
ical, without any clear physical meaning at present. It is introduced mainly for quantitatively
evaluating the centrality evolution of factorization breakdown effect, as will be discussed later
in Section 5.4.

r4 also is more sensitive to longitudinal fluctuations than r2 
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• High precision measurements on azimuthal anisotropy in PbPb and pPb by 
ATLAS and CMS. 

• Large variety of (new) methods, e.g. vn-vm, EP correlations, show promising 
potential for further insight in HI collisions.  ATLAS and CMS results on 
event-plane fluctuations

• Collective flow also established in pPb collisions 

• Good description of data by viscous hydrodynamic models with fluctuating 
initial-state conditions. 
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Backup Slides
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Single flow harmonics vn: ultra-central collisions

29

J. Jia, J. Phys. G: Nucl. Part. Phys. 41 (2014) 124003
CMS, JHEP02(2014)088

Ultra-central Pb+Pb collisions are sensitive to EbyE fluctuations

Luzum, Ollitrault, Nuclear Physics A 904-905 (2013)

Comparison with hydrodynamic calculation at various initial conditions show 
discrepancies, mainly in the relative strength of v2 and v3.
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Flow amplitude correlations p(vn, vm)
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ATLAS, arxiv 1504.01289

Correlation of v2 and v3  for two pT intervals for various centrality bins. 
Data points are calculated in each centrality bin for several intervals in 
the shape parameter qm.  

They increase monotonically with qm. 
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 { 3v

0

0.05
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0.15

ATLAS Pb+Pb
 = 2.76 TeVNNs

-1bµ = 7 intL

|<5η∆2<|

(b)

Centrality 0-70%, no shape sele.

 selection:
3

Centrality with q
0-5%
10-15%
20-25%
30-35%
40-45%
50-55%
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