Generalized solution for RS metric and LHC phenomenology

Alexander Kisselev

IHEP, NRC "Kurchatov Institute", Protvino, Russia

The Third Annual Conference on Large Hadron Collider Physics (LHCP2015) St. Petersburg, Russia, September 2, 2015

Plan of the talk

- Randall-Sundrum scenario with two branes. Original RS solution
- Generalization of RS solution
- Solution with explicit orbifold symmetries
- Role of constant term. Different physical schemes
- Dilepton production at LHC in RS-like scenario
- **Conclusions**

Randall-Sundrum scenario

Background metric (y is extra coordinate)

Periodicity: $(x, y \pm 2\pi r_c) = (x, y)$ Z₂-symmetry: (x, y) = (x, -y)

orbifold S^1/Z_2 $0 \le y \le \pi r_c$

Two fixed points: y=0 and $y=\pi r_c$

two (1+3)-dimensional branes

5-dimensional action $S = S_g + S_1 + S_2$

$$S_g = \int d^4x \int dy \sqrt{G} \left(2M_5^3 R^{(5)} - \Lambda \right)$$
 (gravity term)

$$S_{1(2)} = \int d^4 x \sqrt{g_{1(2)}} \left(L_{1(2)} - \Lambda_{1(2)} \right)$$
 (brane terms)

Einstein-Hilbert's equations:

$$\sigma'^{2}(y) = -\frac{\Lambda}{24M_{5}^{3}}$$
$$\sigma''(y) = \frac{1}{12M_{5}^{3}} [\Lambda_{1}\delta(y) + \Lambda_{2}\delta(\pi r_{c} - y)]$$

Original Randall-Sundrum solution

(Randall & Sundrum, 1999)

$$\sigma_{\rm RS}(y) = \kappa |y| \quad \Lambda_{\rm RS} = -24M_5^3\kappa^2, \quad (\Lambda_1)_{\rm RS} = -(\Lambda_2)_{\rm RS} = 24M_5^3\kappa$$

$$\sigma'_{\rm RS}(y) = \kappa \varepsilon(y) \qquad \sigma''_{\rm RS}(y) = 2\kappa \delta(y)$$

The RS solution:

- -does not explicitly reproduce the jump of derivative on TeV brane (at $y=\pi r_c$)
- is not symmetric with respect to both branes (located at y=0 and y=πr_c)
- does not include a constant term

Generalization of RS solution

Two equivalent solutions related to different branes

Generalized solution $(0 \le C \le \kappa \pi r_c)$

$$\sigma(y) = \frac{1}{2} \left[\sigma_0(y) + \sigma_{\pi}(y) \right] - C = \frac{\kappa}{2} \left(|y| - |y - \pi r_c| \right) + \frac{\kappa \pi r_c}{2} - C$$

with fine tuning

 $\Lambda = -24M_5^3\kappa^2, \quad \Lambda_1 = -\Lambda_2 = 12M_5^3\kappa$

1-st derivative of $\sigma(y)$

$$\sigma'(y) = \frac{\kappa}{2} \left[\varepsilon(y) - \varepsilon(y - \pi r_c) \right]$$

**2-nd derivative of
$$\sigma(y) = \kappa \left[\delta(y) - \delta(y - \pi r_c) \right]$$**

LHCP2015, St. Petersburg, Russia, September 2, 2015 factor of 2 different

than that of RS

Explicit account of periodicity and Z₂-symmetry

Solution for the warp function in variable $x = y/r_c$ (A.K., 2015)

$$\sigma(y) = \frac{\kappa r_c}{2} \left[\left| \operatorname{Arccos}(\cos x) \right| - \left| \operatorname{Arccos}(\cos x) - \pi \right| \right] + \frac{\pi \kappa r_c}{2} - C$$

Arccos(z) is principal value of inverse cosine

$$0 \le \operatorname{Arccos}(z) \le \pi, \quad -1 \le z \le 1$$

Arccos(cos x) = $\begin{cases} x - 2n\pi, & 2n\pi \le x \le (2n+1)\pi \\ -x + 2(n+1)\pi, & (2n+1)\pi \le x \le 2(n+1)\pi \end{cases}$

(see, for instance, Gradshteyn & Ryzhik)

In particular, $\sigma(y) = \kappa y$ for $0 \le y \le \pi r_c$

Orbifold symmetries:

 $\sigma(y + 2\pi r_c) = \sigma(y) \quad \text{(periodicity)}$ $\sigma(-y) = \sigma(y) \quad (\mathbf{Z}_2 \text{ symmetry})$

1-st derivative of \sigma(y): $(y \neq \pi nr_c, n = 0, \pm 1, \pm 2, ...)$

$$\sigma'(y) = \kappa \operatorname{sign}(\operatorname{sin}(x))$$
 $\sigma'(-y) = -\sigma'(y)$

2-nd derivative of σ(y):

$$\sigma''(y) = \frac{\kappa}{r_c} \sum_{n=-\infty}^{\infty} \left[\delta(x + 2\pi n) - \delta(x - \pi + 2\pi n) \right]$$

Hierarchy relation $M_{\rm Pl}^2 = \frac{M_5^3}{\kappa} \exp(2\mathbf{C})$

Interaction Lagrangian (massive gravitons only)

$$L(x) = -\frac{1}{\Lambda_{\pi}} \sum_{n=1}^{\infty} h_{\mu\nu}^{(n)}(x) T_{\alpha\beta}(x) \eta^{\mu\alpha} \eta^{\nu\beta}$$

Masses of KK gravitons (x_n are zeros of J₁(x))

$$m_n = x_n \frac{M_{\rm Pl}}{\sqrt{\exp(2\pi\kappa r_c) - 1}} \left(\frac{\kappa}{M_5}\right)^{3/2}$$

Masses of KK gravitons m_{n} and coupling Λ_{π} depend on C via M_{5} and κ

Different values of C result in quite diverse physical models

Different physical scenarios

I. C = 0
$$\sigma(0) = 0, \quad \sigma(\pi r_c) = \kappa \pi r_c$$

Masses of KK resonances
$$m_n \cong x_n \kappa \exp(-\kappa \pi r_c)$$

RS1 model (*Randall & Sundrum*, 1999)

Graviton spectrum - heavy resonances, with the lightest one above 1 TeV

II.
$$\mathbf{C} = \kappa \pi \mathbf{r}_{\mathbf{c}}$$
 $\sigma(0) = -\kappa \pi \mathbf{r}_{\mathbf{c}}, \quad \sigma(\pi \mathbf{r}) = 0$

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \exp(2\pi\kappa r_c)$$

 $\kappa \ll M_5$ $\kappa r_c \approx 9.5$ for $M_5 = 1 \text{ TeV}, \kappa = 100 \text{ MeV}$

Masses of KK resonances

$$m_n \cong x_n \kappa$$

RSSC model: scenario with small curvature of 5-dimensional space-time

For small *k*, graviton spectrum is similar to that of the ADD model

(Giudice, 2005 Petrov & A.K., 2005)

III.
$$C = \kappa \pi r_c / 2$$
 $\sigma(0) = -\sigma(\pi r_c) = \kappa \pi r_c / 2$ "symmetric"
scheme
 $M_{\text{Pl}}^2 \cong \frac{2M_5^3}{\kappa} \sinh(2\pi\kappa r_c)$

Masses of gravitons $m_n \cong x_n \kappa \exp(-\kappa \pi r_c/2)$

Let
$$M_5 = 2 \cdot 10^9 \,\text{GeV}, \,\kappa = 10^4 \,\text{GeV}$$

$$\longrightarrow m_n \cong 3.7 x_n (\text{MeV})$$
 (A.K., 2015)

Almost continuous spectrum of KK gravitons

Virtual Gravitons at the LHC

pp-collisions at LHC mediated by KK graviton exchange in *s*-channel

Processes:
$$pp \rightarrow l^+ l^- (\gamma \gamma, 2jets) + X$$

Matrix element of sub-process

Dilepton production at LHC in scenario with small curvature

Scenario II (C = $\kappa \pi r_c$)

Number of events with p_t > p_t^{cut}

$$N_{S} = \int_{p_{\perp}^{\text{cut}}} dp_{\perp} \frac{d\sigma(\text{grav})}{dp_{\perp}}, \quad N_{B} = \int_{p_{\perp}^{\text{cut}}} dp_{\perp} \frac{d\sigma(\text{SM})}{dp_{\perp}}$$

Interference (SM-gravity) contribution is negligible

Statistical significance

$$S = \frac{N_S}{\sqrt{N_S + N_B}}$$

No deviations from the CM were seen at the LHC

LHC search limits on M_5 ($p_t^{cut} = 200 \text{ GeV}$)

 $M_5 > 6.4 \text{ TeV}$ for 7 + 8 TeV, $L = 5 \text{ fb}^{-1} + 20 \text{ fb}^{-1}$

M₅ > 9.0 TeV for 13 TeV, *L* = 30 fb⁻¹

Week dependence of limits on parameter к

Scenario III (C = $\kappa \pi r_c/2$)

$$\mathbf{S}(s) = \frac{1}{2\Lambda_{\pi}^3 \sqrt{s}} \left(\frac{M_5}{\kappa}\right)^{3/2} \frac{J_2(z)}{J_1(z)} \quad \text{with} \quad z \cong \frac{\sqrt{s}}{\Lambda_{\pi}} \left(\frac{M_5}{\kappa}\right)^{3/2}$$

(relation of m_n with x_n was used)

For chosen values of parameters

$$|S(s)| = \frac{O(1)}{(1 \text{ TeV})^3 \sqrt{s}}$$

TeV physics at LHC energies

Conclusions

- Generalized solution for metric in RS-like scenario is derived
- This solution $\sigma(y)$:
 - is symmetric with respect to the branes
 - has the jumps of its derivative on both branes
 - is consistent with the orbifold symmetries
 - depends on constant C ($0 \le C \le \kappa \pi r_c$)
- Different values of C result in quite diverse physical scenarios: RS1, RSSC, "symmetric" models

Conclusions (continued)

- All these schemes lead to TeV physics at LHC, but with different experimental signatures
- LHC limits on gravity scale M₅ are obtained in RS-like scheme with small curvature

Thank you for your attention

Back-up slides

Extra dimensions: LHC limits

ADD model :

M_D > 4 TeV (for n_{ED} = 4) real graviton production (CMS, EPJC 75 (2015) 235)

M_S > 7 TeV (for n_{ED} = 4) virtual graviton exchange (HLZ convention) (CMS, PLB 746 (2015) 79)

RS model :

$$\label{eq:mG*} \begin{split} m_{G^*} &> 2.7 \; \text{TeV} \; (\text{for } \kappa/M_{Pl} \; = \; 0.1 \;) \\ & (ATLAS \; , \; PRD \; 90 \; (2014) \; 052005) \end{split}$$

Dilepton production

```
Pseudorapidity cuts:
|\eta| \le 2.4 (muons)
|\eta| \le 1.44, 1.57 \le |\eta| \le 2.4 (electrons)
```

Efficiency: 85 %

K-factor:

1.5 for SM background1.0 for signal

Uncertainties in search limit (L = 30 fb⁻¹)

 $\mu/2 \rightarrow \mu \rightarrow 2\mu \longrightarrow |\Delta M_5| = 17 \text{ GeV}$

PDF set (2.7%) \longrightarrow $|\Delta M_5| = 23 \, \text{GeV}$

 $\Delta L (3\%) \qquad \longrightarrow \quad |\Delta M_5| = 26 \, \text{GeV}$

Statistical significance in RSSC for $pp \rightarrow e^+e^- + X$ as a function of 5-dimensional reduced Planck scale M_5 and cut on electron transverse momentum p_t^{cut} for 7 TeV (L=5 fb⁻¹) and 8 TeV (L=20 fb⁻¹)

Statistical significance for the process $pp \rightarrow e^+e^- + X$ as a function of 5-dimensional reduced Planck scale M_5 and cut on electron transverse momentum p_t^{cut} for 13 TeV (L=30 fb⁻¹)

Graviton contributions in RSSC to the process $pp \rightarrow \mu + \mu - + X$ (solid lines) vs. SM contribution (dashed line) for 7 TeV

Graviton contributions in RSSC to the process $pp \rightarrow \mu + \mu - + X$ (solid lines) vs. SM contribution (dashed line) for 14 TeV

$$\frac{d\sigma(SM)}{dp_t} = \frac{1}{s^{3/2}} f(x_\perp, \ln s)$$

Weak logarithmic dependence on energy comes from PDFs

$$\frac{d\sigma(grav)}{dp_t} = \frac{1}{M_5^3} g(x_\perp, \ln s)$$
$$\frac{d\sigma(grav)}{dp} \left(\sqrt{s}\right)^3$$

$$\frac{d\sigma(SM)/dp_{t}}{d\sigma(SM)/dp_{t}} \approx \left(\frac{\sqrt{3}}{M_{5}}\right) \quad \text{(for fixed x_{\perp})}$$

dσ(grav): week dependence on curvature κ

$$d\sigma(pp \rightarrow h^{(n)} \rightarrow \gamma\gamma) =$$

$$2 \cdot d\sigma(pp \rightarrow h^{(n)} \rightarrow l^+l^-)$$
universal for
all subprocesses

$$q\overline{q} \to G^{(n)} \to l^+ l^- : 1 - 3\cos^2\theta + 4\cos^4\theta$$
$$gg \to G^{(n)} \to l^+ l^- : 1 - \cos^4\theta$$

while in SM: $1 + \cos^2 \theta$

Effective gravity action

$$S_{\text{eff}} = \frac{1}{4} \sum_{n=0}^{\infty} \int d^4 x [\partial_{\mu} h_{\rho\sigma}^{(n)}(x) \partial_{\nu} h_{\delta\lambda}^{(n)}(x) \eta^{\mu\nu} - m_n^2 h_{\rho\sigma}^{(n)}(x) h_{\delta\lambda}^{(n)}(x)] \eta^{\rho\delta} \eta^{\sigma\lambda}$$

Shift $\sigma \to \sigma - C$ is equivalent to the change $x^{\mu} \to x'^{\mu} = e^{-C} x^{\mu}$

Invariance of the action **—** rescaling of fields and masses:

$$h_{\mu\nu}^{(n)} \rightarrow h'_{\mu\nu}^{(n)} = e^C h_{\mu\nu}^{(n)}, \quad m_n \rightarrow m'_n = e^C m_n$$

Massive theory is not scale-invariant

From the point of view of 4- dimensional observer these two theories are not physically equivalent

Randall-Sundrum solution $\sigma_{RS}(y) = \kappa |y|$

Does it mean that $\sigma_{RS}(y)$ is a linear function for all y?

The answer is negative: one must use the periodicity condition first, and only then estimate absolute value |y|

In other words, extra coordinate y must be reduced to the interval $-\pi r_c \le y \le \pi r_c$ (by using periodicity condition) before evaluating functions $|x|, \varepsilon(x), ...$

Examples: definition of $\sigma(y)$ outside interval $|y| \leq \pi r_c$

Let
$$y = \pi r_c + y_0$$
, where $0 < y_0 < \pi r_c$
(that is, $\pi r_c < y < 2\pi r_c$)

$$\sigma(\pi r_c + y_0) + C = \frac{\kappa}{2} (|\pi r_c + y_0| - |y_0|) + \frac{\pi r_c}{2}$$
$$= \frac{\kappa}{2} (|\pi r_c + y_0 - 2\pi \mathbf{r_c}| - |y_0|) + \frac{\pi r_c}{2} = \kappa(\pi r_c - y_0)$$

RSSC model vs.ADD model

RSSC model is **not** equivalent to the ADD model with one ED of size R=(πκ)⁻¹ up to $\kappa \approx 10^{-20}$ eV

Hierarchy relation for small κ

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \left[\exp(2\pi\kappa r_c) - 1 \right] \xrightarrow{2\pi\kappa r_c <<1} M_5^3(2\pi r_c)$$

But the inequality $\frac{2\pi\kappa r_c}{2\pi\kappa r_c} \ll 1$ means that

$$\kappa \ll \frac{M_5^3}{M_{\text{Pl}}^2} \approx 0.17 \cdot 10^{-18} \left(\frac{M_5}{1\text{TeV}}\right)^3 \text{eV}$$

$$\sum_{n=1}^{\infty} \frac{1}{z_{n,v}^2 - z^2} = \frac{1}{2z} \frac{J_{v+1}(z)}{J_v(z)}, \quad J_v(z_{n,v}) = 0$$

$$S(s) \approx -\frac{1}{4\overline{M}_{5}^{3}\sqrt{s}} \frac{\sin 2A + i \sinh 2\varepsilon}{\cos^{2}A + \sinh^{2}\varepsilon} \quad (A.K, 2006)$$

where
$$A = \frac{\sqrt{s}}{\kappa}, \ \varepsilon = \frac{\eta}{2} \left(\frac{\sqrt{s}}{\overline{M}_5}\right)^3$$

