Quarkonium production in p-A and A-A collisions

Igor Lakomov (CERN)

LHCP2015: The 3rd Conference on Large Hadron Collider Physics 01/09/2015, Saint-Petersburg

Outline

♦Quark-Gluon Plasma vs Cold Nuclear Matter

 \diamond Pb-Pb results

 \diamond p-Pb results

♦ From p-Pb to Pb-Pb

 \diamond Summary and outlook

I. Lakomov, LHCP 2015, 01/09/2015

Quark-Gluon Plasma

- QCD: strong force describes the interactions between quarks and gluons forming hadrons.
- Lattice QCD predicts a deconfined state of matter (QGP) at high temperature.
- QGP can be recreated in Heavy-Ion Collisions (HIC) at hadron colliders.
- QGP lifetime is small (~2-4 fm/c at RHIC, ~15-20 fm/c at the LHC)*, a direct observation of the QGP is not possible.
- Experimental probes of QGP: jet quenching, strangeness enhancement, quarkonia, etc.

* 1 fm/c ~ 10⁻²⁴ sec

Quarkonia, a key tool for the QGP

- ♦ Bound states of charm or beauty quark and its anti-quark
- \diamond Heavy and tightly bound

- $c + \overline{c} = charmonia (J/\psi, \psi(2S), ...)$ $b + \overline{b} = bottomonia (\Upsilon(nS))$
- \diamond Heavy quark pairs produced in the initial hard partonic collisions.
- ♦ Suppressed by Debye color screening:
 - Color charge of one quark masked by surrounding quarks.
 - Prevents $q\overline{q}$ binding in the QGP.
 - ***** Debye screening radius (λ_D) vs quarkonium radius (r).
 - $↔ λ_D < r \Rightarrow$ the quarks are effectively masked from each other.

Suppression vs enhancement

- Bound states of charm or beauty quark and its anti-quark
- \diamond Heavy and tightly bound

- $c + \overline{c} = charmonia (J/\psi, \psi(2S), ...)$ $b + \overline{b} = bottomonia (\Upsilon(nS))$
- \diamond Heavy quark pairs produced in the initial hard partonic collisions.
- \diamond **Suppressed** by Debye color screening:
 - Color charge of one quark masked by surrounding quarks.
 - Prevents $q\overline{q}$ binding in the QGP.
 - ***** Debye screening radius (λ_D) vs quarkonium radius (r).
 - $↔ λ_D < r \Rightarrow$ the quarks are effectively masked from each other.

\diamond Recombination

- ✓ In central HIC, N_{cc} > 1. (RHIC: ~10; LHC: ~100).
- ✓ Regeneration of J/ ψ pairs possible from independently produced c & \overline{c}

> Leads to an enhancement of J/ψ (or less dramatic suppression if 2 effects compete). \Box No/small regeneration is expected for bottomonia.

Nuclear matter effects

Nuclear matter effects

Main observable:

 $R_{AA} = \frac{Y_{AA}}{N_{coll}Y_{pp}}$ ratio of the production yield in AA to that in pp, scaled by the number of binary nucleon-nucleon collisions.

♦ If $R_{AA} \neq 1 \Rightarrow$ there are some nuclear matter effects.

J/ψ suppression in Pb-Pb

- > Different R_{AA} at LHC vs RHIC: recombination.
- > Regeneration is larger at low p_{T} .
- > High- p_{T} J/ ψ are suppressed.

 J/ψ suppression is less pronounced in central compared to peripheral collisions.

Low- $p_T J/\psi$ in Pb-Pb

$\langle p_T \rangle$ of J/ ψ in Pb-Pb

> Significant reduction of J/ $\psi < p_T^2 >$ in Pb-Pb as compared to pp collisions.

- Opposite trend at RHIC and SPS energies.
- Transport model with regeneration component reproduces data at different energies.

$\psi(2S) vs J/\psi$ in Pb-Pb

- High-p_T J/ψ and ψ(2S) are suppressed, consistent with the sequential melting.
- At lower p_T, and forward y, less ψ(2S) suppression.
- ➤ At high p_T, enhanced suppression in central events.

Bottomonia in Pb-Pb

Nuclear matter effects

Elementary collision No nuclear matter effects Cold nuclear matter(CNM) effects without QGP + Hot nuclear matter effects (related to QGP formation)

To disentangle hot and CNM effects, p-Pb collisions are needed as an intermediate step between Pb-Pb and benchmark pp collisions.

In p-Pb collisions different kinds of CNM effects can be considered:

1 Initial-state:

- ✓ gluon shadowing
- ✓ gluon saturation

2 Final-state:

nuclear absorption

③ Coherent parton energy loss

J/ψ vs p_T and y in p-Pb

- $\geq R_{pPb} \approx 1$ for all p_T at backward y, and for high p_T at forward y.
- > At forward y, R_{pPb} increases with p_T .
- > As a function of rapidity, R_{pPb} decreases from backward to forward y.
- > Shadowing and coherent Eloss: fairly reproduce p_T and y dependence, except low p_T at forward y, where coherent Eloss underestimates the data.
- \succ CGC: overestimates the suppression at forward-y over the full p_T range.

Prompt J/\psi in p-Pb

- > At forward y, the difference <25%.
- \succ Small non-prompt fraction + large uncertainties \Rightarrow safe to compare to inclusive.

$J/\psi Q_{pPb}$ vs centrality

- \succ Large J/ ψ suppression at forward y, increasing with N_{coll}.
- Consistent with no CNM effects at backward y.
- > Large uncertainties at **mid-y**.

$J/\psi Q_{pPb}$ vs p_T and centrality

Large CNM effects in most central events: Q_{pPb} increases with p_T at both backward and forward y.

> At small centrality Q_{pPb} is consistent with unity for backward and forward y.

Surprising trend in ATLAS at high p_{T} for the most peripheral collisions.

$J/\psi p_{T}$ broadening

$$\Delta < p_T^2 > = < p_T^2 >_{pPb} - < p_T^2 >_{pp}$$

 $< p_T^2 >_{pp}$ is from interpolated pp distributions at $\sqrt{s} = 5.02 \text{ TeV}$

*Boxes at $\Delta < p_T^2 > = 0$: uncertainty from $< p_T^2 >_{pp}$ at $\forall s_{NN} = 5.02 \text{ TeV}$

<u>Models</u>

- Multiple scattering model (Kang et al. Phys.Rev. D77 (2008) 114027, Phys.Lett. B721 (2013) 277).
- Coherent energy loss (Arleo et al., JHEP1305(2013)155).

- Harder p_{T} distribution at forward y than at backward y.
- ▶ At backward y, the $\langle p_T^2 \rangle_{pPb} \approx \langle p_T^2 \rangle_{pp}$ in peripheral collisions.
- Such a strong p_T broadening indicates a presence of Multi-Parton Interactions in p-Pb collisions.

$\psi(2S)$ vs J/ ψ in p-Pb

$\psi(2S) vs J/\psi in p-Pb$

(CERN,

Y(nS) in p-Pb

> Similar suppression of Y(1S) and (prompt) J/ ψ .

> Y(2S)/Y(1S) decreases with increasing multiplicity.

J/ ψ : from p-Pb to Pb-Pb

Hypothesis

JHEP 1506 (2015) 055

- ✓ Assume similar x in Pb for Pb-Pb@√s_{NN}=2.76 TeV and in p-Pb@√s_{NN}=5.02 TeV.
- ✓ Factorization of shadowing effects in p-Pb and Pb-Pb $\Rightarrow R_{PbPb}^{Shad} = R_{pPb}(y \ge 0) \times R_{pPb}(y \le 0)$.

➢ High p_T: suppression in Pb-Pb due to hot nuclear matter effects (QGP).
➢ Low p_T: less or same suppression with R_{Pb-Pb} compared to R^{Shad}_{PbPb}.
→ Hint for (re)combination in Pb-Pb?

Summary

- Quarkonium production in Pb-Pb is mainly dominated by the hot nuclear matter effects.
- **I** In p-Pb: strong CNM effects in quarkonium production; depend on p_{T} , y and centrality.
- □ The CNM effects are higher in the most central collisions, decreasing towards peripheral.
- $\Box \quad \text{Strong } p_{\mathsf{T}} \text{ broadening is found at forward } y.$
- No model is able to reproduce precisely all observables, though shadowing and coherent energy loss work well.
- **The** $\psi(2S)$ is suppressed more than J/ ψ in p-Pb compared to pp collisions.
- Comover model can describe different behaviour of the 2 charmonium states in p-Pb.
- **G** Some inconsistencies between ALICE and ATLAS: p_{T} dependence or reference issue?
- Data taking of pp@5.02TeV are appreciated.

Thank you!

I. Lakomov, LHCP 2015, 01/09/2015

Backup slides

I. Lakomov, LHCP 2015, 01/09/2015

p-Pb detector setup

Shift in y_{cms} in p-Pb collisions

LHC beam asymmetry (E_{Pb} =1.58•A TeV, E_p =4 TeV) $\Rightarrow |\Delta y|_{cms} = 0.5 \text{ Log}(Z_{Pb}A_p/Z_pA_{Pb}) = 0.465$

Prompt J/\psi in p-Pb

Y(1S) vs Y(2S) cross-sections

• Y(1S) cross-sections in p-Pb@5.02 TeV (ALICE): -4.46 < y_{cms} < -2.96: 5.57 ± 0.72^{stat.} ± 0.60^{syst.} µb 2.03 < y_{cms} < 3.53: 8.45 ± 0.94^{stat.} ± 0.77^{syst.} µb

• Y(2S) cross-sections in p-Pb@5.02 TeV (ALICE): -4.46 < y_{cms} < -2.96: 1.85 ± 0.61^{stat.} ± 0.32^{syst.} µb 2.03 < y_{cms} < 3.53: 2.97 ± 0.82^{stat.} ± 0.50^{syst.} µb

★ [Y(2S)/Y(1S)] in p-Pb@5.02 TeV (ALICE):
-4.46 < y_{cms} < -2.96): 0.26 ± 0.09 ± 0.04
2.03 < y_{cms} < 3.53: 0.27 ± 0.08 ± 0.04

[Y(2S)/Y(1S)] in pp@7 TeV (ALICE):
2.5 < y < 4.0: 0.28 ± 0.08

PLB 740 (2015) 105

For ALICE no evidence of different CNM effects on Y(2S) compared to Y(1S).
CMS measured at mid-y [Y(2S)/Y(1S)]_{pPb}/[Y(2S)/Y(1S)]_{pp} = 0.83 ± 0.05^{stat.} ± 0.05^{syst.}

Coherent parton energy loss in Pb-Pb

