

Outline

Introduction: The NICA project at JINR

- 1. Accelerators and Colliders in the NICA Energy range
- 2. NICA Stage I
- 3. NICA Stage II
- 4. NICA Elements Fabrication in Collaboration ...
- 5. Booster Synchrotron and Beam Transfer Channel
- 6. Nuclotron Upgrade
- 7. NICA Elements Fabrication in Collaboration ... (Contnd)
- 8. MultiPurpose and BM@N detectors
- 9. NICA Stage III: Collider of polarized beams
- 10. NICA Collaboration
- 11. Infrastructure and civil engineering
- 12. Start up mode of NICA operation
- 13. Where are we going...

Concluding remarks

Introduction: The NICA Project at JINR

The NICA project is aimed to develop, construct and commission at Joint Institute for Nuclear Research (Dubna, Russia) a modern accelerator complex

Nuclotron-based Ion Collider fAcility (NICA) equipped with two detectors

MultiPurpose Detector (MPD)

8

Spin Physics Detector (SPD)

and perform experiments on search of the mixed phase
of baryonic matter state
and
nature of nucleon/particle spin

Introduction: The NICA Project at JINR

The NICA project is planned to be commissioned in three stages:

I. Fixed target experiments on Nuclotron ion beams:

Li ÷ Au => 1 - 4.5 GeV /u ion kinetic energy
$$\sqrt{s}$$
 (Au × Au) = 2.33 - 3.47 GeV/u

II. Heavy ion colliding beams up to 197 Au $^{79+}$ + 197 Au $^{79+}$

$$1 \div 4.5 \text{ GeV/u}$$
 ion kinetic energy $\sqrt{s_{\text{NN}}} = 4 - 11 \text{ GeV}$, $L_{\text{average}} = 1 \times 10^{27} \text{ cm}^{-2} \cdot \text{s}^{-1}$

Light \times Heavy ion colliding beams of the same $\sqrt{s_{NN}}$

and the same or higher L_{average}

III. Polarized protons and deuterons

$$p\uparrow$$
, $p\uparrow$ = 5 - 12.6 GeV kinetic energy (\sqrt{s} = 12 - 27 GeV)
 $d\uparrow$, $d\uparrow$ = 2 - 5.9 GeV/u kinetic energy (\sqrt{s} = 4 - 13.8 GeV/u)
 $L_{max} \approx 1 \times 10^{32} \text{ cm}^{-2} \cdot \text{s}^{-1}$

Nuclei Collisions and Phase Trajectories in T-n_B space

Introduction: Physics Case of the NICA project

1b. Accelerators & Colliders for Spin Physics Today

Future Machines with Polarized Beams

Existing Machines with Polarized Beams

2. NICA - Stage I

Nuclotron Beams

Parameter	Achieved			Project (2017)	
Magnetic field, T	2.0			2.0 (Bρ = 42.8 T·m)	
Field ramp, T/s	0.8			1.0	
Repetition period, s	8.0			5.0	
	Energy, GeV/u		Ene	rgy, GeV/u	lons/ cycle
Light ions ⇒ d	5.6		6.0		5·10 ¹⁰
Heavy ions	Without KRION-2		With KRION-6T & Booster		
$^{40}Ar^{13+} => ^{40}Ar^{18+}$	3.5	5·10 ⁶		5.2	2·10 ¹⁰
⁵⁶ Fe ¹⁴⁺ => ⁵⁶ Fe ²⁶⁺	2.5	2·10 ⁶		5.4	1·10 ¹⁰
131 Xe ²¹⁺ => 131 Xe ⁵⁴⁺	1.5	1·10³		4.7	2·10 ⁹
$^{197}Au^{31+} => ^{131}Au^{79+}$	[1.37]			4.5	2·10 ⁹
Polarized beams	With Polaris		With SPI		
p↑)		11.9	1·10 ¹⁰ *)
d↑	2.0	5·10 ⁸		5.6	1·10 ¹⁰

*) With the Siberian snake in Nuclotron

3. NICA – Stage II (Heavy Ion Mode)

Key Parameters of The NICA Collider

	King circumference, in	303,07			
Collider lattice: FODO, 12 cells x 90° each arc	Number of bunches 22				
	R.m.s. bunch length, m	0.6			
	Ring acceptance, π·mm·mrad	40.0			
	Long. Acceptance, $\Delta p/p$	≤ 0.01			
	γ _{transition} (E _{transition} , GeV/u)	7.091 (5.72)			
	β*, m	0.35			
	Ion Kin. Energy, GeV/u √s, GeV/u	1.0 4.0	3.0 5.0	4.5 11.0	
	Ion number/bunch, 1e9	0.275	2.4	2.2	
	R.m.s. emittance, h/v π·mm·mrad	1.1/1.0	1.1/0.9	1.1/0.76	
	R.m.s. ∆p/p, 1e-3	0.62	1.25	1.65	
Cooling is mandatory	IBS growth time, s	190	700	2500	
	Peak luminosity, cm ⁻² ·s ⁻¹	1.1e25	1e27	1e27	
en la compose de					

Ring circumference, m

503.04

3. NICA – Stage II: Structure in Heavy Ion Mode

4.1. Heavy Ion Source KRION-6T/ESIS

(Electron String Ion Source modification)

Test results (April 2014):

B= 5.4T magnetic field

- Au³⁰⁺ \div Au³²⁺, 6·10⁸ per cycle, rep. rate 50 Hz
- Au⁵¹⁺ \div Au⁵⁴⁺, 1·10⁸ per cycle, rep. rate 30 Hz

Test at Nuclotron with new RFQ injector of LU-20 is scheduled for spring 2016.

KRION-6T at the LU-20 linac (May 2014)

4.2. Heavy Ion Linear Accelerator

2nd resonator of

RFQ DTL section

(HILAc, 3 MeV/u)

HILAc is under delivery from **BEVATECH Cº (Frankfurt):** Two sections have been transported to JINR;

Final assembling and test at JINR is scheduled for September 2015.

Resonator # 1 of RFQ section

Drift tubes and gaps of the 3rd resonator of **RFQ DTL**

4.3. SC Magnets for Booster, Collider & SIS-100 (FAIR) SC Magnet Plant at VBLHEP

Co-investments from JINR and BMBF (GSI, Germany)

4.3. SC Magnets for Booster, Collider & SIS-100 (FAIR)

The Collider "twin" dipole and lens

HTSC current leads 17 kA

Sextupole corrector prototype for SIS100 and NICA Booster

SIS-100

4.4 & 4.5. Budker INP (Novosibirsk) - design and

4.4. RF acceleration systems for Booster

fabrication

RF for Booster (June 2013) has been delivered to JINR in September 2014

4.5. Electron cooler for the Booster (stage of fabrication)

BINP-JINR team at 1st RF station: test at test-bench at JINR, November 2014

Electron cooler for NICA Booster assembled at BINP 03.09.2015

5. Booster Synchrotron Construction

5. Beam Transfer Channel Booster - Nuclotron

Parameters of The Stationary NC Magnets of The Channel

Magnetic element	Туре	Effective length, m	Max. magn. field, T	Max. gradient, T/m
BM1 – BM5	Dipole	1,312	1,8	
LM	Lambertson	1	1,5	
	magnet			
Q1, Q3	Quadrupole	0,4		27
Q2	quadrupole	0,6		27
Q4 –	quadrupole	0,4		12

6. Nuclotron Upgrade

Nuclotron is SC synchrotron accelerating ions and delivering presently ion beams:

deuterons $E_{max} = 4.8 \text{ GeV/u}$ (B = 1.7 T) 124 Xe⁴²⁺ E_{max} = 3.0 GeV/u (B = 1.7 T).

The Nuclotron upgrade tasks for collider mode:

- Acceleration of ¹⁹⁷Au⁷⁹⁺ up to 4.5 GeV/u
- Injection system for ¹⁹⁷Au⁷⁹⁺ at 600 MeV/u
- Upgrade of RF system
- Extraction system for 197 Au $^{79+}$ at $1 \div 4.5$ GeV/u
- Upgrade of control system (synchronization!)

JINR + BINP 7.1. Beam transfer channel Nuclotron - Collider (stage of working design)

Channel lattice:

pulsed magnets, 35 dipoles, 56 quadrupoles, P_{average} ~ 200 kW

NICA

JINR + BINP + 7. NICA Elements Fabrication in Collaboration ...

+ AREI + Fermilab + NEC + Geliymash (Moscow)

(Contnd)

7.2. Electron Cooler for NICA Collider – Two Versions

Electron energy $0.5 \div 2.5$ MeV, electron beam current $0.1 \div 1$ A

NbTi cable $\phi 0.5 \text{ MM}$ L = 275 km \$ 250,000

HTSC band $12 \times 0.5 \text{ MM}^2$ L = 11.5 km \$ 350,000

Maximum electron energy, MeV	2.5
Electron beam current, A	0.1 – 1.0
Solenoids' magnetic field, T	0.2

(JINR version)

SC solenoids

JINR + FZ Jülich 7.3. Stochastic Cooling for NICA Collider

Pick-Up/Kicker Station (FZJ)

Stochastic Cooling
Test experiment at Nuclotron

March 2013 Schottky-signal spectrum Before (blue) and after (yellow) cooling Deuterons, 3 GeV/u, h = 3500, $N_{ion} = 2e9$

December 2013 Carbon ions $^{12}C^{6+}$ 3 GeV/u, $N_{ion} = 5e8$ Coasting beam $\tau_{cool} = 27$ sec (h = 2500) Bunched beam $\tau_{cool} = 50$ sec (h =2000)

8. MultiPurpose Detector (MPD)

3 stages of MPD commissioning

8. MultiPurpose Detector (MPD)

The Signatures of The Cumulative effects and What is to look for? The Mixed Phase Formation

✓ Ellipticity parameters of the flow of the central fireball matter in momentum space:

in momentum space;

- √ The famous "Horn" (Indication to Onset of Deconfinement?)
- ✓ Registration of leptons => they carry information about QGP-phase structure!
- ✓ Registration of photons => that gives us the temperature of QGP.
- ✓ Fluctuations of the reaction parameters! They are "a sign" of the mixed phase: system becomes unstable at the two-phases stage!

(GeV)

NA49/

RHIC

 10^{2}

Pb+Pb. Au+Au

Horn

0.2

FAIR

(SIS100)

Workshop for The Microstrip Subdetector Assembly & Tests

CBM at FAIR

(SiTS) for BM@N & MPD at NICA &

Workshop for Assembly and Tests of the TOF Subdetectors

The detector assembly has been started in Dec. 2014; will be fully completed in 2015

The bench for ultrasonic cleaning of glass, in operation

Test at the Nuclotron beam of the prototype of the full-scale of the Multi-Resistive Plate Counter (mRPC)

Workshop for the TPC Assembly & Tests (under preparation)

LHCP2015

SC Solenoid of the MPD, B = 0.66 T

Project: "Neva-Magnit" C° (St. Petersburg)

9. NICA - Stage III: Collider of polarized beams

Accelerators:

- 1st concept of the collider beams has been developed. It assumes acceleration of polarized protons (!) and deuterons in Nuclotron avoiding the Booster.
- Concept of the acceleration of the polarized protons in Nuclotron has been developed, but its realization requires a significant upgrade of the Nuclotron.
- New concept with polarized particles acceleration in the Booster and storage in the Collider rings is under preliminary consideration.
- Analysis of depolarization effects in the Collider is in progress.

9. NICA - Stage III: Collider of polarized beams

Source of Polarized (p↑ & d↑) Ions SPI

Accelerators:

Collaboration of INR (Troitsk) & JINR

31

9. NICA - Stage III: Collider of polarized beams

SPD status:

02.06.14 LoI formulated and distributed (17 institutions):

"SPIN PHYSICS EXPERIMENTS AT NICA-SPD WITH POLARIZED PROTON AND DEUTERON BEAMS"

18.02.2015 JINR SPD working group formed:

- to start the work on SPD TDR
- to organize the work related to the acceleration of polarized particles and beam polarization measurements
- to organize formation of the international collaboration
- Application of MPD to the stage III is under consideration

Spin Physics Detector (SPD) – Very First Concept (2012)

Main elements of the detector:

- Silicon or MicroMega (inner tracking)
- Drift chambers or straw (tracking)
- Cherenkov counter (for particle ID and trigger)
- EM calorimeter
- Trigger counters
- EndCap detectors

Subdetector for muon pairs

magnet

outer radius about 150 cm

10. NICA Collaboration

Belarus NC PHEP B GSU (Gome	SU (Minsk) el) Germany GSI (Darmstadt) JLU (Giessen) UR (Regensburk) Frankfurt/Main Univ. FIAS FZJ (Julich) FAU(Erlangen)	Bulgaria INRNE BAS (Sofia) TU-Sofia SU ISSP BAS LTD BAS SWU PU (Ploydiy) TUL (Blagoevgrad)	INR RAS (INR	Moscow) loscow) (Novosibirsk) cow) Moscow) iv ersity
Australia Azerbaijan CERN China France Georgia Greece India	Tech, University (Warsaw University Fracoterm (Krakow Wroclaw University INP (Krakow)	Cze TUL CU	ch Republic (Liberec) (Prague) zh,	Italy Japan Moldova Mongolia Romania Serbia Slovakia USA

10. NICA Collaboration

Budker INP

Booster RF system, e-cooler Collider RF system

- HV e-cooler for collider
- ✓ Electronics

Alikhanov ITEP

Beam dynamics, RFQ linac

Institute for Electrotechnique HV Electron cooler

IHEP, Protvino
Beam dynamics,
Feed-back systems

GSI/FAIR

SC magnets for
Booster/Collider/SIS-100,
RF, UHV, beam cooling, diagnostics

FZ Juelich (IKP)

HV Electron cooler Stochastic cooling

Fermilab

HV Electron cooler Beam dynamics, stoch.cooling

CERN

SC technologies, Rad.safety, energetics, Beam cooling and dynamics, Metrology

BNL (RHIC)

Beam dynamics, Stochastic cooling

iThemba Labs & 6 others (RSA)
Elements of the NICA accelerators

34 😘

11. Infrastructure and civil engineering Cryogenics (Infrastructure Engineering)

The productivity of the LHe cold-productivity of the cryogenic system will be increased from 4 kW up to 8 kW at 4.5 K

11. Infrastructure and civil engineering

The technical project of NICA (civil engineering, equipment description and disposition) has been completed in 2013

and has passed State Expertise (Sept. 2013).

11. Infrastructure and civil engineering

Phase 1 of Civil construction has been started

21 November 2013. The cutting of the trees for clearance the NICA

11. Civil engineering – Status and Plans

Contract for the 1st phase of the Collider building construction will be signed soon (stage of *final coordination*) with the building company "Strabag", Austria (the winner of the tender). The 1st phase assumes preparatory work on NICA site analysis and infrastructure for construction work preparation. Then the 2nd phase – the building construction works – begins. Civil construction duration is estimated by Strabag C° as

42 months!

Beginning of the Collider mounting is planned for September 2018

Start up version of NICA commissioning is scheduled for the end of 2019.

12. Start up mode of NICA operation

The NICA accelerator complex commissioning is scheduled for

the end of 2019

The complex will be commissioned with

- Injectors chain
- Transfer channels
- Collider in start up version, i.e:

with RF-1 and RF-2, biu without RF-3
with SC system - one channel per ring (longitudinal cooling)
without El-Cooler
without feed-back system

It will allow us to provide collider operation in the energy range of 3 - 4 GeV/u (\sqrt{s} = 8 - 10 GeV/u) ¹⁹⁷Au⁷⁹⁺ ions at the luminosity of

5x10²⁵ cm⁻²·s⁻¹

13. Where are we going...

Concluding remarks

- The NICA accelerators are in the stage of fabrication and/or assembling/mounting
- > BM@N and MPD sub-detectors are in the stage of the fabrication
- the civil construction of NICA complex was started
- SPD LoI has been prepared and SPD working group has been formed
- International cooperation around NICA is growing
- The commissioning of the start-up mode of the NICA is scheduled for the end of 2019

The set of NICA beams provides unique possibility both for basic and applied researches in the forthcoming decades.

Backups

8. NICA – Stage III: Collider of polarized beams

SPD:

The proposed measurements:

- **▶** DY processes
- ► Direct (prompt) photons
- ► J/Ψ production processes
- ► Spin effects in inclusive high-p_T reactions
- ► Polarization effects in heavy ion collisions
- ► Spin-dependent effects in elastic pp, dp, dd scattering

3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode)

Facility operation scenario: Three Steps of Beam Formation in NICA Collider

Step 1. Cooling and stacking with barrier voltage

Sufficient condition for ion stacking: $\tau_{cool} \le T_{injection}$ (injection period)

Necessary condition for ion stacking: T_{synchr. oscillation} < T_{injection}

RF-1 acceleration station of "barrier voltage"

3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode)

Facility operation scenario: Three Steps of Beam Formation in NICA Collider

Steps 2-3. Formation of the short ion bunches in presence of cooling, RF-2 & RF-3 acceleration station of harmonic voltage

From coasting beam => to 22^{nd} harmonics = > 66^{th} harmonics

3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode)

Intriguing question: Why RHIC has low luminosity at the energy where luminosity of NICA is relatively high? The reason is the beam space charge (single bunch problem!):

$$N_{bunch} \propto 1/C_{ring}$$
, $L \propto (N_{bunch})^2 \propto 1/(C_{ring})^2$!

$$C_{RHIC}/C_{NICA} = 7.62$$
, $L_{NICA}/L_{RHIC} = (C_{RHIC}/C_{NICA})^2 \le 58.1$

Parameter	RHIC	NICA	
C _{Ring} , m	3834	503	
Bunch length, m	1.0	0.6 ←	
Beam emittance, π·mm·mrad	1.0	1.0	
Number of intersections	6	2	
β*, m	1.0	0.35	
Hour-glass factor	0.8	0.6	

I.Meshkov

NICA Plans

LHCP2015

