Outline #### Introduction: The NICA project at JINR - 1. Accelerators and Colliders in the NICA Energy range - 2. NICA Stage I - 3. NICA Stage II - 4. NICA Elements Fabrication in Collaboration ... - 5. Booster Synchrotron and Beam Transfer Channel - 6. Nuclotron Upgrade - 7. NICA Elements Fabrication in Collaboration ... (Contnd) - 8. MultiPurpose and BM@N detectors - 9. NICA Stage III: Collider of polarized beams - 10. NICA Collaboration - 11. Infrastructure and civil engineering - 12. Start up mode of NICA operation - 13. Where are we going... Concluding remarks ## Introduction: The NICA Project at JINR The NICA project is aimed to develop, construct and commission at Joint Institute for Nuclear Research (Dubna, Russia) a modern accelerator complex Nuclotron-based Ion Collider fAcility (NICA) equipped with two detectors MultiPurpose Detector (MPD) 8 Spin Physics Detector (SPD) and perform experiments on search of the mixed phase of baryonic matter state and nature of nucleon/particle spin ## Introduction: The NICA Project at JINR The NICA project is planned to be commissioned in three stages: I. Fixed target experiments on Nuclotron ion beams: Li ÷ Au => 1 - 4.5 GeV /u ion kinetic energy $$\sqrt{s}$$ (Au × Au) = 2.33 - 3.47 GeV/u II. Heavy ion colliding beams up to 197 Au $^{79+}$ + 197 Au $^{79+}$ $$1 \div 4.5 \text{ GeV/u}$$ ion kinetic energy $\sqrt{s_{\text{NN}}} = 4 - 11 \text{ GeV}$, $L_{\text{average}} = 1 \times 10^{27} \text{ cm}^{-2} \cdot \text{s}^{-1}$ Light \times Heavy ion colliding beams of the same $\sqrt{s_{NN}}$ and the same or higher L_{average} III. Polarized protons and deuterons $$p\uparrow$$, $p\uparrow$ = 5 - 12.6 GeV kinetic energy (\sqrt{s} = 12 - 27 GeV) $d\uparrow$, $d\uparrow$ = 2 - 5.9 GeV/u kinetic energy (\sqrt{s} = 4 - 13.8 GeV/u) $L_{max} \approx 1 \times 10^{32} \text{ cm}^{-2} \cdot \text{s}^{-1}$ ## Nuclei Collisions and Phase Trajectories in T-n_B space ## Introduction: Physics Case of the NICA project # 1b. Accelerators & Colliders for Spin Physics Today #### Future Machines with Polarized Beams #### **Existing Machines with Polarized Beams** ## 2. NICA - Stage I #### **Nuclotron Beams** | Parameter | Achieved | | | Project (2017) | | |--|-----------------|-------------------|-------------------------|---------------------|-----------------------| | Magnetic field, T | 2.0 | | | 2.0 (Bρ = 42.8 T·m) | | | Field ramp, T/s | 0.8 | | | 1.0 | | | Repetition period, s | 8.0 | | | 5.0 | | | | Energy, GeV/u | | Ene | rgy, GeV/u | lons/ cycle | | Light ions ⇒ d | 5.6 | | 6.0 | | 5·10 ¹⁰ | | Heavy ions | Without KRION-2 | | With KRION-6T & Booster | | | | $^{40}Ar^{13+} => ^{40}Ar^{18+}$ | 3.5 | 5·10 ⁶ | | 5.2 | 2·10 ¹⁰ | | ⁵⁶ Fe ¹⁴⁺ => ⁵⁶ Fe ²⁶⁺ | 2.5 | 2·10 ⁶ | | 5.4 | 1·10 ¹⁰ | | 131 Xe ²¹⁺ => 131 Xe ⁵⁴⁺ | 1.5 | 1·10³ | | 4.7 | 2·10 ⁹ | | $^{197}Au^{31+} => ^{131}Au^{79+}$ | [1.37] | | | 4.5 | 2·10 ⁹ | | Polarized beams | With Polaris | | With SPI | | | | p↑ | |) | | 11.9 | 1·10 ¹⁰ *) | | d↑ | 2.0 | 5·10 ⁸ | | 5.6 | 1·10 ¹⁰ | *) With the Siberian snake in Nuclotron ## 3. NICA – Stage II (Heavy Ion Mode) ## **Key Parameters of The NICA Collider** | | King circumference, in | 303,07 | | | | |--|---|--------------|------------|-------------|--| | Collider lattice: FODO, 12 cells x 90° each arc | Number of bunches 22 | | | | | | | R.m.s. bunch length, m | 0.6 | | | | | | Ring acceptance, π·mm·mrad | 40.0 | | | | | | Long. Acceptance, $\Delta p/p$ | ≤ 0.01 | | | | | | γ _{transition} (E _{transition} , GeV/u) | 7.091 (5.72) | | | | | | β*, m | 0.35 | | | | | | Ion Kin. Energy, GeV/u
√s, GeV/u | 1.0
4.0 | 3.0
5.0 | 4.5
11.0 | | | | Ion number/bunch, 1e9 | 0.275 | 2.4 | 2.2 | | | | R.m.s. emittance, h/v π·mm·mrad | 1.1/1.0 | 1.1/0.9 | 1.1/0.76 | | | | R.m.s. ∆p/p, 1e-3 | 0.62 | 1.25 | 1.65 | | | Cooling is mandatory | IBS growth time, s | 190 | 700 | 2500 | | | | Peak luminosity, cm ⁻² ·s ⁻¹ | 1.1e25 | 1e27 | 1e27 | | | en la compose de | | | | | | Ring circumference, m 503.04 ### 3. NICA – Stage II: Structure in Heavy Ion Mode #### 4.1. Heavy Ion Source KRION-6T/ESIS (Electron String Ion Source modification) Test results (April 2014): B= 5.4T magnetic field - Au³⁰⁺ \div Au³²⁺, 6·10⁸ per cycle, rep. rate 50 Hz - Au⁵¹⁺ \div Au⁵⁴⁺, 1·10⁸ per cycle, rep. rate 30 Hz Test at Nuclotron with new RFQ injector of LU-20 is scheduled for spring 2016. KRION-6T at the LU-20 linac (May 2014) 4.2. Heavy Ion Linear Accelerator 2nd resonator of **RFQ DTL section** (HILAc, 3 MeV/u) HILAc is under delivery from **BEVATECH Cº (Frankfurt):** Two sections have been transported to JINR; Final assembling and test at JINR is scheduled for September 2015. Resonator # 1 of RFQ section **Drift tubes and** gaps of the 3rd resonator of **RFQ DTL** # 4.3. SC Magnets for Booster, Collider & SIS-100 (FAIR) SC Magnet Plant at VBLHEP Co-investments from JINR and BMBF (GSI, Germany) #### 4.3. SC Magnets for Booster, Collider & SIS-100 (FAIR) The Collider "twin" dipole and lens HTSC current leads 17 kA Sextupole corrector prototype for SIS100 and NICA Booster **SIS-100** ## 4.4 & 4.5. Budker INP (Novosibirsk) - design and #### 4.4. RF acceleration systems for Booster fabrication RF for Booster (June 2013) has been delivered to JINR in September 2014 ## 4.5. Electron cooler for the Booster (stage of fabrication) BINP-JINR team at 1st RF station: test at test-bench at JINR, November 2014 Electron cooler for NICA Booster assembled at BINP 03.09.2015 ## 5. Booster Synchrotron Construction #### 5. Beam Transfer Channel Booster - Nuclotron #### **Parameters of The Stationary NC Magnets of The Channel** | Magnetic element | Туре | Effective length, m | Max. magn. field, T | Max. gradient, T/m | |------------------|------------|---------------------|---------------------|--------------------| | BM1 – BM5 | Dipole | 1,312 | 1,8 | | | LM | Lambertson | 1 | 1,5 | | | | magnet | | | | | Q1, Q3 | Quadrupole | 0,4 | | 27 | | Q2 | quadrupole | 0,6 | | 27 | | Q4 – | quadrupole | 0,4 | | 12 | ### 6. Nuclotron Upgrade **Nuclotron is SC synchrotron** accelerating ions and delivering presently ion beams: deuterons $E_{max} = 4.8 \text{ GeV/u}$ (B = 1.7 T) 124 Xe⁴²⁺ E_{max} = 3.0 GeV/u (B = 1.7 T). ## The Nuclotron upgrade tasks for collider mode: - Acceleration of ¹⁹⁷Au⁷⁹⁺ up to 4.5 GeV/u - Injection system for ¹⁹⁷Au⁷⁹⁺ at 600 MeV/u - Upgrade of RF system - Extraction system for 197 Au $^{79+}$ at $1 \div 4.5$ GeV/u - Upgrade of control system (synchronization!) JINR + BINP 7.1. Beam transfer channel Nuclotron - Collider (stage of working design) #### **Channel lattice:** pulsed magnets, 35 dipoles, 56 quadrupoles, P_{average} ~ 200 kW NICA #### JINR + BINP + 7. NICA Elements Fabrication in Collaboration ... + AREI + Fermilab + NEC + Geliymash (Moscow) (Contnd) #### 7.2. Electron Cooler for NICA Collider – Two Versions Electron energy $0.5 \div 2.5$ MeV, electron beam current $0.1 \div 1$ A NbTi cable $\phi 0.5 \text{ MM}$ L = 275 km \$ 250,000 HTSC band $12 \times 0.5 \text{ MM}^2$ L = 11.5 km \$ 350,000 | Maximum electron energy, MeV | 2.5 | |------------------------------|-----------| | Electron beam current, A | 0.1 – 1.0 | | Solenoids' magnetic field, T | 0.2 | (JINR version) SC solenoids ## JINR + FZ Jülich 7.3. Stochastic Cooling for NICA Collider #### Pick-Up/Kicker Station (FZJ) Stochastic Cooling Test experiment at Nuclotron March 2013 Schottky-signal spectrum Before (blue) and after (yellow) cooling Deuterons, 3 GeV/u, h = 3500, $N_{ion} = 2e9$ December 2013 Carbon ions $^{12}C^{6+}$ 3 GeV/u, $N_{ion} = 5e8$ Coasting beam $\tau_{cool} = 27$ sec (h = 2500) Bunched beam $\tau_{cool} = 50$ sec (h =2000) ## 8. MultiPurpose Detector (MPD) #### 3 stages of MPD commissioning #### 8. MultiPurpose Detector (MPD) # The Signatures of The Cumulative effects and What is to look for? The Mixed Phase Formation ✓ Ellipticity parameters of the flow of the central fireball matter in momentum space: in momentum space; - √ The famous "Horn" (Indication to Onset of Deconfinement?) - ✓ Registration of leptons => they carry information about QGP-phase structure! - ✓ Registration of photons => that gives us the temperature of QGP. - ✓ Fluctuations of the reaction parameters! They are "a sign" of the mixed phase: system becomes unstable at the two-phases stage! (GeV) NA49/ **RHIC** 10^{2} Pb+Pb. Au+Au Horn 0.2 **FAIR** (SIS100) #### Workshop for The Microstrip Subdetector Assembly & Tests CBM at FAIR (SiTS) for BM@N & MPD at NICA & #### **Workshop for Assembly and Tests of the TOF Subdetectors** The detector assembly has been started in Dec. 2014; will be fully completed in 2015 The bench for ultrasonic cleaning of glass, in operation Test at the Nuclotron beam of the prototype of the full-scale of the Multi-Resistive Plate Counter (mRPC) ## Workshop for the TPC Assembly & Tests (under preparation) **LHCP2015** SC Solenoid of the MPD, B = 0.66 T Project: "Neva-Magnit" C° (St. Petersburg) #### 9. NICA - Stage III: Collider of polarized beams #### **Accelerators:** - 1st concept of the collider beams has been developed. It assumes acceleration of polarized protons (!) and deuterons in Nuclotron avoiding the Booster. - Concept of the acceleration of the polarized protons in Nuclotron has been developed, but its realization requires a significant upgrade of the Nuclotron. - New concept with polarized particles acceleration in the Booster and storage in the Collider rings is under preliminary consideration. - Analysis of depolarization effects in the Collider is in progress. ## 9. NICA - Stage III: Collider of polarized beams ## Source of Polarized (p↑ & d↑) Ions SPI #### **Accelerators:** #### Collaboration of INR (Troitsk) & JINR 31 #### 9. NICA - Stage III: Collider of polarized beams #### **SPD** status: **02.06.14** LoI formulated and distributed (17 institutions): "SPIN PHYSICS EXPERIMENTS AT NICA-SPD WITH POLARIZED PROTON AND DEUTERON BEAMS" #### **18.02.2015** JINR SPD working group formed: - to start the work on SPD TDR - to organize the work related to the acceleration of polarized particles and beam polarization measurements - to organize formation of the international collaboration - Application of MPD to the stage III is under consideration **Spin Physics Detector (SPD) – Very First Concept** (2012) #### **Main elements of the detector:** - Silicon or MicroMega (inner tracking) - Drift chambers or straw (tracking) - Cherenkov counter (for particle ID and trigger) - EM calorimeter - Trigger counters - EndCap detectors Subdetector for muon pairs magnet outer radius about 150 cm ## 10. NICA Collaboration | Belarus
NC PHEP B
GSU (Gome | SU (Minsk) el) Germany GSI (Darmstadt) JLU (Giessen) UR (Regensburk) Frankfurt/Main Univ. FIAS FZJ (Julich) FAU(Erlangen) | Bulgaria INRNE BAS (Sofia) TU-Sofia SU ISSP BAS LTD BAS SWU PU (Ploydiy) TUL (Blagoevgrad) | INR RAS (INR | Moscow) loscow) (Novosibirsk) cow) Moscow) iv ersity | |--|---|--|--|--| | Australia
Azerbaijan
CERN
China
France
Georgia
Greece
India | Tech, University (Warsaw University Fracoterm (Krakow Wroclaw University INP (Krakow) | Cze
TUL
CU | ch Republic
(Liberec)
(Prague)
zh, | Italy Japan Moldova Mongolia Romania Serbia Slovakia USA | #### 10. NICA Collaboration #### **Budker INP** Booster RF system, e-cooler Collider RF system - HV e-cooler for collider - ✓ Electronics #### Alikhanov ITEP Beam dynamics, RFQ linac ## Institute for Electrotechnique HV Electron cooler IHEP, Protvino Beam dynamics, Feed-back systems #### **GSI/FAIR** SC magnets for Booster/Collider/SIS-100, RF, UHV, beam cooling, diagnostics #### FZ Juelich (IKP) **HV Electron cooler Stochastic cooling** #### **Fermilab** HV Electron cooler Beam dynamics, stoch.cooling #### **CERN** SC technologies, Rad.safety, energetics, Beam cooling and dynamics, Metrology #### **BNL (RHIC)** Beam dynamics, Stochastic cooling iThemba Labs & 6 others (RSA) Elements of the NICA accelerators 34 😘 # 11. Infrastructure and civil engineering Cryogenics (Infrastructure Engineering) The productivity of the LHe cold-productivity of the cryogenic system will be increased from 4 kW up to 8 kW at 4.5 K ## 11. Infrastructure and civil engineering The technical project of NICA (civil engineering, equipment description and disposition) has been completed in 2013 and has passed State Expertise (Sept. 2013). ### 11. Infrastructure and civil engineering Phase 1 of Civil construction has been started 21 November 2013. The cutting of the trees for clearance the NICA ### 11. Civil engineering – Status and Plans Contract for the 1st phase of the Collider building construction will be signed soon (stage of *final coordination*) with the building company "Strabag", Austria (the winner of the tender). The 1st phase assumes preparatory work on NICA site analysis and infrastructure for construction work preparation. Then the 2nd phase – the building construction works – begins. Civil construction duration is estimated by Strabag C° as 42 months! Beginning of the Collider mounting is planned for September 2018 Start up version of NICA commissioning is scheduled for the end of 2019. ### 12. Start up mode of NICA operation The NICA accelerator complex commissioning is scheduled for the end of 2019 The complex will be commissioned with - Injectors chain - Transfer channels - Collider in start up version, i.e: with RF-1 and RF-2, biu without RF-3 with SC system - one channel per ring (longitudinal cooling) without El-Cooler without feed-back system It will allow us to provide collider operation in the energy range of 3 - 4 GeV/u (\sqrt{s} = 8 - 10 GeV/u) ¹⁹⁷Au⁷⁹⁺ ions at the luminosity of 5x10²⁵ cm⁻²·s⁻¹ #### 13. Where are we going... # **Concluding remarks** - The NICA accelerators are in the stage of fabrication and/or assembling/mounting - > BM@N and MPD sub-detectors are in the stage of the fabrication - the civil construction of NICA complex was started - SPD LoI has been prepared and SPD working group has been formed - International cooperation around NICA is growing - The commissioning of the start-up mode of the NICA is scheduled for the end of 2019 The set of NICA beams provides unique possibility both for basic and applied researches in the forthcoming decades. # **Backups** #### 8. NICA – Stage III: Collider of polarized beams ## **SPD**: #### The proposed measurements: - **▶** DY processes - ► Direct (prompt) photons - ► J/Ψ production processes - ► Spin effects in inclusive high-p_T reactions - ► Polarization effects in heavy ion collisions - ► Spin-dependent effects in elastic pp, dp, dd scattering # 3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode) Facility operation scenario: Three Steps of Beam Formation in NICA Collider Step 1. Cooling and stacking with barrier voltage Sufficient condition for ion stacking: $\tau_{cool} \le T_{injection}$ (injection period) **Necessary condition for ion stacking:** T_{synchr. oscillation} < T_{injection} RF-1 acceleration station of "barrier voltage" # 3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode) Facility operation scenario: Three Steps of Beam Formation in NICA Collider Steps 2-3. Formation of the short ion bunches in presence of cooling, RF-2 & RF-3 acceleration station of harmonic voltage From coasting beam => to 22^{nd} harmonics = > 66^{th} harmonics # 3. NICA – Stage II: Structure and Operation Regimes (Heavy Ion Mode) Intriguing question: Why RHIC has low luminosity at the energy where luminosity of NICA is relatively high? The reason is the beam space charge (single bunch problem!): $$N_{bunch} \propto 1/C_{ring}$$, $L \propto (N_{bunch})^2 \propto 1/(C_{ring})^2$! $$C_{RHIC}/C_{NICA} = 7.62$$, $L_{NICA}/L_{RHIC} = (C_{RHIC}/C_{NICA})^2 \le 58.1$ | Parameter | RHIC | NICA | | |---------------------------|------|-------|--| | C _{Ring} , m | 3834 | 503 | | | Bunch length, m | 1.0 | 0.6 ← | | | Beam emittance, π·mm·mrad | 1.0 | 1.0 | | | Number of intersections | 6 | 2 | | | β*, m | 1.0 | 0.35 | | | Hour-glass factor | 0.8 | 0.6 | | I.Meshkov **NICA Plans** **LHCP2015**