Search for new physics in dijet resonant signatures and recent results from Run2 with the ATLAS experiment

Doug Gingrich University of Alberta and TRIUMF on behalf of the ATLAS Collaboration

Introduction

- In proton-proton collisions, we can use parton-parton s-channel production to produce a single particle.
 - Then this particle can decay to quarks and gluons.
- Many models beyond the standard model (BSM) predict new particles, or excitations, decaying to partons that can produce hadronic jets.
- High- p_T jets access the highest mass scales at the LHC.
- QCD scattering is t-channel, leading to angular distributions peaking at small scattering angles.

Method

- We perform search in two-jet (dijet) invariant mass, m_{jj}, spectrum.
- SM spectrum at high mass totally dominated by QCD processes.
- If BSM resonance width narrow, it can produce local excess (bump) in dijet mass spectrum over the smooth SM background.

History

- Excesses in the dijet spectrum have been search for by all collider experiments: CDF, D0, CMS, ATLAS.
- In 2010, ATLAS and CMS published first results.
- In 2011, ATLAS used 4.8 fb⁻¹ at $\int s = 7$ TeV.
- I will cover ATLAS results for 20.3 fb⁻¹ at √s = 8 TeV (full 2012 dataset).
- I will also cover ATLAS results for 80 pb⁻¹ of √s = 13 TeV (August).
- No significant excess observed above background.
- We set limits on a number of BSM models and generic resonance shapes.

ATLAS detector/trigger

- ATLAS consists of tracking detectors, calorimeters, muon chambers.
- High-p_T hadronic jets are reconstructed using a finely segmented calorimeter system.
- Use single-jet triggers.
 - Low-p_T threshold triggers pre-scaled.
 - Combination of pre-scaled triggers used to cover low-mass part of dijet spectrum.
- Use a delayed trigger stream.
 - Increase luminosity in region 0.75-1 TeV by order of magnitude.

Jet and event selection

- Jets are reconstructed using anti-k_t jet algorithm with R = 0.6 on topological calorimeter clusters with energy significantly above noise.
- The effects of other bunch crossings corrected for.
- Jet cleaning is performed.
- Require at lease 1 collision vertex defined by 2 or more charged tracks.
- Rapidity of two leading jets |y| < 2.8.
- Two leading jets $p_T > 50$ GeV.
- Event cuts (to reduce background from QCD processes to resonant BSM physics):
 - |y*| = 0.5|y_leading y_subleading| < 0.6.</p>
 - m_{jj} > 250 GeV.

Dijet spectrum

- Bin width chosen by dijet mass resolution.
- Data-driven background estimate.
- Fit smooth functional form to data.

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x},$$
$$x \equiv m_{jj}/\sqrt{s}.$$

- $\chi^2 = 79/56 \text{ dof}.$
- p-value of fit 0.027.
- No evidence for a resonant signal in observed m_{jj} spectrum.

Limit setting

- Use a Bayesian method.
- Set 95% credibility-level upper limits on cross section times branching ratio times acceptance ($\sigma \times B \times A$).
- Use constant prior for signal strength and Gaussian priors for nuisance parameters corresponding to systematic uncertainties.
- Full template shape is considered in the limit-setting.
- Set lower-limits on mass, or energy scale, as appropriate.
- Models span a range of characteristic masses (or energy scales) and cross sections, and are complementary in terms of the flavour of their final-state partons.

Limits on new resonant phenomena

1 September 2015

Doug Gingrich (LHCP2015)

Limits on quantum black holes

ATLAS 13 TeV results

1 September 2015

Doug Gingrich (LHCP2015)

13 TeV dijet mass specturm

- 80 pb⁻¹ of data at √s = 13 TeV (includes August 50 ns data).
- Does not include Toroid-off data.
- Trigger p_T > 360 GeV.
- Require 2 jets:
 - p_⊤ > 410 GeV leading,
 - p_T > 50 GeV subleading.
- Require m_{jj} > 1.1 TeV.
- Remove log factor from fit function.

13 TeV QBH limits

- ADD, n = 6, $M_D = M_{th}$.
- Signal acceptance ~50%.
- 95% CL mass limits:
 - 6.8 TeV QBH
 - 6.5 TeV BlackMax.
- cf. previous ATLAS limits of 5.66 (5.62) TeV.

13 Multijet search

- Search for low-scale gravity in final states with multiple jets.
- Dominant black hole decay mode, thought to be to partons, leading to hadronic jets. This search uses jets only.
- Perform search in scalar sum of jet transverse momentum, H_T , for several inclusive jet multiplicities.
- Define three regions:
 - Control (C < H_T < V): used to fit data</p>
 - Validation (V < H_T < S): used to validate fit
 - Signal ($H_T < S$): used to predict background
- Data fit to empirical function in CR.
- Extrapolated to predict number of events in VR and CR.
- To avoid signal contaminations use a 2-step bootstrap procedure.
 - CR, VR, SR boundaries depend on integrated luminosity and inclusive jet multiplicity.

Step 2: 74 pb⁻¹ results

1 September 2015

Doug Gingrich (LHCP2015)

15/20

13 TeV multijet limits

Run1: $M_{th} > 5.9$ TeV at 95% CL for $M_D = 3$ TeV.

Final states with leptons and jets

- Search for low-scale gravity in final states with leptons and jets.
- Lepton requirement reduces QCD backgrounds.
- Require at least 3 high p_T objects of which one must be a lepton (electron or muon) and the others are hadronic jets.
- Scalar sum of the p_T of these objects, Σp_T , is the discriminating variable of the search.
- Signal region requirements:
 - p_T(lepton) > 100 GeV
 - p_T(2 other objects) > 100 GeV
 - Σp_T > 2 (3) TeV
- Backgrounds are W+jets and Z+jets, and ttbar production.
 - Shapes taken from MC and normalized to data in control regions.
- Also fake electrons (hadronic jets incorrectly reconstructed as electrons)
 - Estimated from data.

Leptons + jets results

Leptons + jets limits on BH

- Rotating classical black hole.
- ADD, n = 6 extra dimensions.
- Charybdis2 generator.
- M_{th} > 6.5 TeV @ 95% CL
 for M_D = 3 TeV
- cf. 5.6 TeV in Run 1.

Conclusions

- ATLAS 20.3 fb⁻¹ of data at $\sqrt{s} = 8$ TeV LHC.
 - No resonance-like features observed.
 - 95% credibility limits set for several BSM models:
 - m_{ii} > 1.65 5.66 TeV.
 - References:
 - Phys. Rev. D 91, 052007 (2015)
- ATLAS 80 pb⁻¹ of data at $\int s = 13$ TeV LHC.
 - No BSM signal observed in 3 searches.
 - 95% CL limits set on black holes:
 - Non-thermal (6.8 TeV); thermal (8.3 TeV at M_D = 3 TeV).
 - References:
 - ATLAS-CONF-2015-042 dijet
 - ATLAS-CONF-2015-043 multijet
 - ATLAS-CONF-2015-046 lepton+jet

Backup slides

Simulation

- Background:
 - Simulate QCD using Pythia 8.160 with CT10 PDF and AU2 tune.
- Signals:
 - Excited quarks, q*
 - Colour-octet scalar model, s8
 - Heavy charged gauge bosons, W'
 - Excited W* boson
 - Quantum black holes, QBH
- Detector effects simulated with Geant4.
- Minimum bias events are overlaid on hard scattering.
- Simulation calibrated to agree with data.

Systematic uncertainties

- Background uncertainties:
 - Background fit quality (statistical uncertainty).
 - Systematic uncertainty estimated from pseudo-experiments.
 - Choice of fit function.
 - Add a parameter in function.
- Signal uncertainties:
 - Jet energy scale.
 - Luminosity.
 - Some PDF, renormalization, factorization scale uncertainties.

Generic limits

Gaussian m_{ii} distribution Convolution of Breit-Wigner m_{jj} distribution and CT10 PDF 10³ $\sigma \times A \times BR [pb]$ √s=8 TeV 10² $\begin{bmatrix} 10^4 \\ 4 \\ 4 \\ 10^3 \\ 4 \\ 7 \\ 10^2 \\ 10^$ ∫L dt = 20.3 fb⁻¹ $\begin{bmatrix} 10^4 \\ 4 \\ 4 \\ 8 \\ 4 \\ 10^2 \end{bmatrix}$ 10' √s=8 TeV √s=8 TeV σ_G/m_G 10 --- 0.15 ∫L dt = 20.3 fb⁻¹ ∫L dt = 20.3 fb⁻¹ --- 0.10 . Г_{вw}/m_{вw} Γ_{BW}/m_{BW} 1 $q\overline{q}$ PDF gg PDF x b Resolution --- 0.05 --- 0.05 10⁻¹ 10 10 --- 0.03 --- 0.03 ---- 0.01 ---- 0.01 10⁻² **→** 0.005 1⊧ -- 0.005 1 10⁻³ 10⁻¹ 10⁻¹∎ ATLAS 10⁻⁴ 10⁻² ⊧ 10^{-2} 2 3 ATLAS ATLAS m_G [TeV] 10⁻³ 10^{-3} 2 2 3 3 m_{BW} [TeV] m_{BW} [TeV] q q-bar **g g**

14 TeV dijet QBH expectations

1 September 2015

Doug Gingrich (LHCP2015)

25/29

13 TeV dijet mass Results

13 TeV Gaussian limits

- Exclude at 95% CL cross sections:
 - 1 4 pb at 1.2 1.4 TeV,
 - 0.2 0.5 pb above 3 TeV.

Multijet analysis strategy

• A series of 10 analytic functions are used.

- Functions are ranked on goodness of their extrapolation.
- Baseline function used to predict background and others used to estimate systematic uncertainty.

Step 1: 6.5 pb⁻¹ results

Doug Gingrich (LHCP2015)