Searches for heavy stable charged particles and other exotic signatures with large ionization at the LHC

Malgorzata Kazana*
on behalf of the ALTAS and *CMS Collaborations

LHCP 2015 St. Petersburg, Russia Aug 31 – Sep 5

Hunting for HSCPs

OUTLINE:

- Various theoretical models predict naturally long-lived particles: pMSSM, GMSB, AMSB, Split-SUSY (with R-hadrons), RPV SUSY, Hidden Valley (HV), Little Higgs and more
- Challenging and interesting
 non-standard measurements and techniques of reconstructions, often
 difficult for triggering
- Signature based searches interpreted in the context of different models
- Review of EXOTIC HSCP searches in the LHC
 - Results from ALTAS and CMS data collected
 in 2012 20/fb at 8TeV

Some EXOTIC Signatures

- Heavy (meta) stable (fractionaly, multi-, flip-) charged particles → HSCP, e.g.:
 - Stau/slepton in Gauge-Mediated SUSY breaking squark LSP in R-Parity violating SUSY
 - R-hadrons decaying via virtual squarks in Split SUSY
 - Nearly mass-degenerate chargino & neutralino in Anomaly-Mediated SUSY
- Main signatures:

While crossing the detector HSCPs may have:

- High/low ionisation (dE/dx)
- Delayed signal (β < 1)
 extended time-of-flight (ToF) vrt SM objects
- ightarrow Mass measurement from β and p $m=rac{p}{\beta\gamma}=rac{p}{eta/\sqrt{1-eta^2}}$

Heavy META Stable Charged Particles in CMS

JHEP 07(2013)122

Signal: Long-Lived Particles from GMSB, Split-SUSY and others:

- lepton like (stau)
 - fractional charge (Q = n ⋅ 1/3e)
 - mulitple charge $(Q = n \cdot e)$

- R-hadrons formed from gluino or stop
- charge can flip while crossing particle interacts with material

Idea of HSCP Search in CMS

HSCP has high unusual **ionization** related to its mass

JHEP 07(2013)122 Superconducting Calorimeter Solenoid

Tracker:

Tracker

Electromagnetic Calorimeter

> Mass determination from dE/dx discriminants

Hadron

$$I_h = K \frac{m^2}{p^2} + C$$

Idea of HSCP Search in CMS

HSCP can be **delayed** with respect to the *c-speed* SM particle

Muon System: Mass determination from β – ToF

Five HSCP Search Paths in CMS

JHEP 07(2013)122

HSCP becoming neutral – Tracker-only

uses: pt, dE/dx

HSCP neutral in tracker, becoming charged

Muon-only uses: pt, TOF

HSCP with $Q = n \cdot e$

Mutiply Charged Particles uses: dE/dx TOF, do not use pt, because reco pt ~ true pt/Q

5• HSCP with $Q = n \cdot 1/3e$

Fractionaly Charged Particles

uses: pt, dE/dx, no TOF to be inclusive

HSCP Results by CMS

dE/dx

JHEP 07(2013)122

dE/dx + TOF

Mass determined from dE/dx

Limits on HSCP by CMS

JHEP 07(2013)122

Stau R-hadrons (stop, gluino)

Mutiply Charged Particles

Fractionaly Charged Particles

HSCP re-interpretation by CMS

EPJ C (2015) 75:325

- Reinterpretation of the HSCP search results in context of pMSSM and AMSB
- Developed a technique to allow anyone to assess CMS sensitivity to any model predicting long-lived lepton-like particles
- The efficiency for HSCP particles is given as a function of β and η in bins of pT , it can be applied to any model if the kinematics is known

Probability maps of that LLP passes all HSCP cuts are expressed as a $f(\beta, pT, \eta)$ Pure GenLevel MC enough to verify results of HSCP analysis

HSCP re-interpretation by CMS

EPJ C (2015) 75:325

 Limits on the long-lived sector of the pMSSM sub-space for SUSY particle masses < 3 TeV:

95.9% (100%) of the points with a chargino lifetime $\tau \ge 10$ ns (1000 ns) are excluded by the present analysis of the results from the CMS search

AMSB: charginos with lifetimes 100 ns (3 ns)

and masses up to about 800 GeV (100 GeV) are excluded at 95% CL "Long-Lived particles in LHC", LHCP'2015 31.09

HSCP in ATLAS

JHEP01 (2015) 068

Analysis strategy

- High pT muon trigger or missing ET trigger, MET > 100 GeV
- Track information (pT> 80 GeV) is used to calculate the candidate mass
 - β calculated from measured ToF using muon system & calorimeter
 - βy deduced from Pixel dE/dx
 - p derived from the candidate track round:

Background:

- High-pT muons with large ionization, mis-measured β
- Contribution estimated from data

Interpretations:

stable sleptons, leptoSUSY, charginos, R-hadrons

"Long-Lived particles in LHC", LHCP'2015 31.09

JHEP01 (2015) 068

Summary of limits reach by ATLAS

Search	Lower mass limit [GeV]
GMSB sleptons	
$\cdot\tan\beta = 10, 20, 30, 40, 50$	440,440,430,410,385
$\cdot \ {\rm direct} \ \tilde{\ell} \ {\rm production} \ (m_{\tilde{\ell}} - m_{\tilde{\tau}_1}$	= 2.7-93 GeV) $377-335$
· direct $\tilde{\tau}_1$ production	289
$\cdot \tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \operatorname{decaying} \operatorname{to} \operatorname{stable} \tilde{\tau}_1$	537
LeptoSUSY	
\cdot $ ilde{q},$ $ ilde{g}$	1500, 1360
Charginos	
$\cdot \; ilde{\chi}_1^\pm$	620
R-hadrons	
$\cdot \ ilde{g}, \ ilde{b}, \ ilde{t} \ ext{(full-detector)}$	1270, 845 and 900
\cdot \tilde{g} , \tilde{b} , \tilde{t} (MS-agnostic)	1260, 835 and 870

Limits on stau – comparison

Direct stau production:

$$m(\widetilde{\tau}_1)$$
 > 339 GeV (CMS)

> 289 GeV (Atlas)

H(meta)SCP in ATLAS

arXiv:1506.05332

- Updated searches using Pixel dE/dx only
 - → extend sensitivity to lower lifetimes (1-10 ng)
- Mass from fitting dE/dx and p
 to an empirical Bethe–Bloch function
- MET trigger

Offline selection:

track isolation
(ΔR with respect to any other track > 0.25)
high (>150 GeV) momentum
high ionization (>MIP value)
electron veto
muon veto if particle is metastable with decay
before the muon system

"Long-Lived particles in LHC", LHCP'2015 31.09

Limits on H(meta)SCP by ATLAS

arXiv:1506.05332

Interpretations: stable and metastable R-hadrons and charginos

Particle	Decay	$m(ilde{\chi}_1^0)[{ m GeV}]$	au [m ns]	$m>[{ m GeV}]$
\tilde{g} R-hadron	stable	_	_	1115
$ ilde{b}$ R -hadron	\mathbf{stable}	_	_	751
\tilde{t} R-hadron	\mathbf{stable}	_	_	766
chargino	stable	_	_	534
\tilde{g} R-hadron	$g/qar{q}$	100	10	1185
\tilde{g} R-hadron	$g/qar{q}$	$m(ilde{g})-100$	10	1099
\tilde{g} R-hadron	$t ar{t}$	100	10	1182
\tilde{g} R-hadron	$t ar{t}$	$m(ilde{g})-480$	10	1157
\tilde{g} R-hadron	$g/qar{q}$	100	1.0	869
\tilde{g} R-hadron	$g/qar{q}$	$m(ilde{g})-100$	1.0	821
\tilde{g} R-hadron	t ar t	100	1.0	836
\tilde{g} R-hadron	t ar t	$m(ilde{g})-480$	1.0	836
chargino	$ ilde{\chi}_1^0 + \pi^\pm$	$m(ilde{\chi}_1^\pm) - 0.14$	1.0	239
chargino	$ ilde{\chi}_1^0 + \pi^\pm$	$m(ilde{\chi}_1^\pm) - 0.14$	15	482

m(g) [GeV]

ALLAS Multi-Charged Particles in ATLAS

arXiv:1504.04188

- Search for MCP long-lived highly ionizing heavy (mass in 50 1000 GeV) particles with high electric charges (|q|=2,3,4,5,6 e)

 Trigger on high pt muons or MET
- Trigger on high pt muons or MET
- **Analysis selection:** muon-like particles with high dE/dx in Pixel, **Transition Radiation Tracker (TRT)** and muon precision chambers (MDT)
- high fraction of TRT hits passing the high threshold
- **Background estimation:** ABCD method on S(dE/dx) variable

$$S(dE/dx) = \frac{dE/dx_{\text{track}} - \langle dE/dx_{\mu} \rangle}{\sigma(dE/dx_{\mu})}$$

Limits on MCP by ATLAS

arXiv:1504.04188

- Results: data in agreement with SM predictions
 - → exclusion limits assuming a Drell-Yan production cross section

Mass limits [GeV]
50-660
50-740
50-780
50-785
50-760

Limits on MCP – comparison

Very similar sensitivity on multi-charged particles

of two experiments

ATLAS

lal	Mass limits [GeV]
2e	50-660
3e	50-740
4e	50-780
5e	50-785
6e	50-760

e/3, 2e/3, 1e, 2e, 3e, 4e, 5e, 6e, 7e, 8e 200, 480, 574, 685, 752, 793, 796, 781, 757, 715 GeV

Monopoles in ATLAS

EXOT-2014-16

Signal: Massive stable particles with **very high electric charge** predicted by several new models, produced in Drell-Yan process as spin-0 or spin-1/2 particles:

theories of magnetic monopoles with Dirac
 magnetic charge g: g = n g_D, where g_D = 68.5e

 strange quark matter, Q-balls, stable microscopic black-hole remnants

Signature:

extremely highly ionization particle (HIP), dE/dx ~ g²

 high-threshold TRT hits associated to narrow EM cluster

Monopoles in ATLAS

EXOT-2014-16

Search for HIPs in mass range 200 – 2500 GeV

• 10 ≤ |z| ≤ 60

• $0.5g_D \le |g| \le 2.0g_D$

Triggering: a dedicated (L2) trigger for HIPs, which made monopoles with |g|>1.0g_D accessible in ATLAS

- EM calorimeter energy deposit with no energy after the first calorimeter layer accompanied by the large fraction of TRT hits passing the high threshold $f_{\rm HT}$
- Collected luminosity: 7.0/fb

Event selection:

- High fHT matched to EM energy deposit
- Low EM energy deposit dispersion (fraction of EM energy contained in the most energetic cells, w)
- ABCD method used to determine the background from data

Limits on monopoles by ATLAS

EXOT-2014-16

- No events observed in 7 fb @ 8 TeV → DY pair production mass limits
- Results from spin-1/2 extrapolated to spin-0

	Drell-Yan Lower Mass Limits [GeV]								
	$ g = 0.5g_{\mathrm{D}}$	$ g = 0.5g_{\rm D}$ $ g = g_{\rm D}$ $ g = 1.5g_{\rm D}$ $ z = 10$ $ z = 20$ $ z = 40$ $ z = 60$							
spin-1/2	1180	1340	1210	780	1050	1160	1070		
spin-0	890	1050	970	490	780	920	880		

Long lived searches in ATLAS

- Wide coverage of different lifetimes is achieved by complementary analyses using different detector systems and novel techniques
- Pixel dE/dx covers region of τ: 1 30 ns

Conclusions

- No evidence for new exotic long-lived particles... yet
- Data significantly constrains many models of BSM
- 2015 pp @ 13 TeV hunting for LLPs restarted
 - Higher energy → wider mass reach
 - More challenging searches
 with higher luminosity
 (tracks, isolation, triggering, etc.)
 - 25 ns collision mode → changes in L1 triggers

Work supported by Polish National Science Center UMO-2014/14/WST2/00428 & UMO-2014/15/B/ST2/03998

Backup

Long Lived Particles Limits

ATLAS

	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk
7	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$	dE/dx trk
Se	Stable, stopped \tilde{g} R-hadron	0
ich	Stable \tilde{g} R-hadron	trk
particles	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e)$	$,\mu)$ 1-2 μ
2 g	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2 γ
1	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	displ. $ee/e\mu/\mu\mu$
	$\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ $GGM \ \tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	displ. vtx + jets

$ ilde{\chi}_1^{\pm} $	270 GeV			
$\widetilde{\mathcal{X}}_1^{\pm}$		482 GeV		
\tilde{g}			832 GeV	
ğ				1.27 TeV
$ ilde{\mathcal{X}}_1^0 $		537 G	eV	
$ ilde{\mathcal{X}}_1^0 $		435 GeV		
$ ilde{\mathcal{X}}_1^0 $			1.0	TeV
$ ilde{\mathcal{X}}_1^0 $			1.0	TeV

CMS

HSCP Selection

Event selection:

- Trigger: muon (pT>40 GeV) or MET > 150 GeV or mu pt> 60 GeV & MET > 65 GeV
- Basic pre-selection:
 pT>45GeV, |η|<2.1, |dxy| and |dz|<0.5cm,
 #Hits>7, very loose isolation, cosmic veto, etc
- Selection optimised to for the best discovery reach for each class of models using track pT, Muon 1/β, Track I_{as} (dE/dx discriminator)
- Background from ABCD method

HSCP RESULTS

					Number of events			
		Selection criteria			$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8 \text{TeV}$	
	p_{T} (GeV/c)	$I_{as}^{(\prime)}$	1/β	Mass (GeV/c²)	Pred.	Obs.	Pred.	Obs.
2.				>0	7.1 ± 1.5	8	33 ± 7	41
	>70	>0.4		>100	6.0 ± 1.3	7	26 ± 5	29
Tracker-only	>/0 >0.4	>0.4	_	>200	0.65 ± 0.14	0	3.1 ± 0.6	3
			>300	0.11 ± 0.02	0	0.55 ± 0.11	1	
				>400	0.030 ± 0.006	0	0.15 ± 0.03	0
1.	>70 >0.125		>1.225	>0	8.5 ± 1.7	7	44 ± 9	42
Tracker+TOF		> 0.125		>100	1.0 ± 0.2	3	5.6 ± 1.1	7
		>1.223	>200	0.11 ± 0.02	1	0.56 ± 0.11	0	
			>300	0.020 ± 0.004	0	0.090 ± 0.02	0	
Muon-only 3.	>230	_	>1.40	_	_	_	6±3	3
Q > 1e 4.	_	>0.500	>1.200	_	0.15 ± 0.04	0	0.52 ± 0.11	1
Q < 1e 5.	>125	>0.275	_	_	0.12 ± 0.07	0	1.0 ± 0.2	0

Mass (GeV/c2)

DE/dx in Run 2

ATLAS-PHYS-PUB-2015-011

ATLAS Detector

