

Soft QCD

at CMS

E.Kuznetsova

(PNPI NRC KI, Gatchina)

on behalf of the CMS Collaboration

LHCP 2015

31 Aug-5 Sept 2015 St.Petersburg

CMS central detector

Muons

(CSC+DT+RPC) $|\eta| < 2.4$

Tracker

(Pixel+SiStrip) $|\eta| < 2.4$ P₊ $\ge 100 \text{ MeV}$

ECAL

PbWO4: $|\eta| < 3$

HCAL

central: scint.+brass : $|\eta| < 3$ $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$

HF: steel+quartz : $2.9 < |\eta| < 5.2$

 $\Delta \eta \times \Delta \phi \sim 0.175 \times 0.175$

Calorimetry + tracking →
Particle Flow Objects

Forward instrumentation

@ P5

outline

```
Underlying events studies with leading track-jets:
                      sqrt(s) = 2.76 TeV
Hard/soft transition leading charged particle / jet
                    sqrt(s) = 7 TeV
cross section:
Mininum Bias - soft diffraction (update):
                      sqrt(s) = 7 TeV
Minimum Bias - charged particles multiplicity:
                     sqrt(s) = 13 TeV
```


UE

Data: sqrt(s) = 2.76 TeV

0.3 nb⁻¹, PU 6.2% (in comparison to 0.9 and 7 TeV)

Jet-enhanced MinBias data

Jets: track-based jets

tracks pT > 0.5 GeV and $|\eta|$ < 2.5 SisCone 0.5: pT(jet) > 1.0 GeV $|\eta(\text{jet})| < 2.0$

TransMIN - MPI mostly

TransMAX - MPI + (FSR, ISR)

Observables:

Hard scale: pT(leading track-jet)

In the transverse region: $(60^{\circ} < |\Delta\phi| < 120^{\circ})$

Charged particle density
Charged particle transverse momentum density

MC/Data

Visible difference dependencies on the hard scale $\sqrt{\frac{6}{N}}$ 0.8

Energy dependence:

Recent tunes of Pythia and Herwig describe data within 5-10%

The energy dependence is

well reproduced by MC

 $|\eta_{\rm int}| < 2.5$

p___[GeV]

10⁻¹ Phys. Rev. D 86, 117501 (2012)

Leading charged particle

and charged-particle jet

Motivation:

2->2:
$$\sigma_{int}(p_{T,min}) = \int_{p_{T,min}} dp_T \frac{d\sigma}{dp_T}$$

$$P_{T_{min}} \rightarrow 0 \Rightarrow \sigma_{int} \sim 1/P_{T_{min}}^2$$

Pythia:

$$\sigma_{ ext{int}} > \sigma_{ ext{inel}}$$
 $\sigma o \sigma imes rac{lpha_s^2 (oldsymbol{p}_{T0}^2 + oldsymbol{p}_T^2)}{lpha_s^2 (oldsymbol{p}_T^2)} rac{oldsymbol{p}_T^4}{(oldsymbol{p}_{T0}^2 + oldsymbol{p}_T^2)^2}$

Event x-section of leading charged particles (charged-particle jets):

$$r(p_{\mathrm{T}}^{\mathrm{min}}) = \frac{1}{N_{\mathrm{evt}}} \int_{p_{\mathrm{T}}^{\mathrm{min}}} \mathrm{d}p_{\mathrm{T}}^{\mathrm{lead}} \left(\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{lead}}} \right) \longrightarrow \frac{1}{N_{\mathrm{evt}}} \sum_{p_{\mathrm{T}\mathrm{lead}} > p_{\mathrm{T}\mathrm{min}}} \Delta p_{\mathrm{T}\mathrm{lead}} \left(\frac{\Delta N}{\Delta p_{\mathrm{T}\mathrm{lead}}} \right)$$

Low pT region:

Sensitive to MPI, probes pQCS - non pQCD transition region, low-x physics

Data: Low-PU (~0.04) 2012 data at sqrt(s) = 8 TeV; CMS-TOTEM run

MinBias with TOTEM T2 (>90% of total inelastic sample)

Selection:

Leading track: $|\eta| < 2.4$, pT > 400 MeV (normalization sample) Leading track-jets: anti-kt 0.5: $|\eta| < 1.9$, pT(jet) > 1.0 GeV

Leading charged particle and charged-particle jet

small contribution MPI: Best description - EPOS

Leading particle

Leading track-jet pp (s = 8 TeV CMS CMS pp $\sqrt{s} = 8 \text{ TeV}$ N_{ab} (p_ > 40 MeV) > 0 in 5.3 < |n| < 6.5 N_{ch} (p_ > 40 MeV) > 0 in 5.3 < |n| < 6.5 Leading charged particles, |n| < 2.4

Soft diffractive

Phys. Rev. D 92, 012003 (2015)

x-section (update)

Data: Low-PU (\sim 0.14) 2010 data at sqrt(s)= 7 TeV

Selection: MinBias with BSC (~total inelastic sample) + LRG topology

At least 2 particle candidates in the BSC acceptance $|\eta| < 4.7$ No vertex requirement (M $_{_{X}} < 100$ GeV)

MC: Pythia8+Minimum Bias Rockfeller model based on renormalized Regge model

Pythia8-4C

"SD" sample: detector-level distribution ξ: (data vs Pythia-MBR)

Phys. Rev. D 92, 012003 (2015)

x-section

Corrections from det.level:

$$\xi = M_x^2/s \leftarrow \xi = \frac{\sum (E^i + p_z^i)}{\sqrt{s}}$$

→ corrected x-section

"SD" sample:

Extrapolation: Pythia-MBR ε =0.08

$$\sigma^{\rm SD} = 8.84 \pm 0.08 \, ({\rm stat})^{+1.49}_{-1.38} \, ({\rm syst})^{+1.17}_{-0.37} \, ({\rm extrap}) \, {\rm mb}$$

$$\sigma^{\mathrm{DD}} = 5.17 \pm 0.08 \, (\mathrm{stat})^{+0.55}_{-0.57} \, (\mathrm{syst})^{+1.62}_{-0.51} \, (\mathrm{extrap}) \, \mathrm{mb} \ |\eta|$$
 > 3

0.2

PYTHIA8 CUETP8M1

50

Charged particles

multiplicity @ 13 TeV

Data: sqrt(s) = 13 TeV, CMS@0T, PU $\lesssim 5\%$

ZeroBias events (BPTX trigger)

Tracks: pixel (3 layers) based tracks

Tracklet:

use feature of straight tracks: find a combination of two hits in different layers of pixel Sensitive to tracks pT > 40 MeV $|\eta| < 2$

+ tracklet-based vertexing

+ corrections using PYTHIA8 CUETP8M1

Tracks from pixel hits triplets:

three aligned hits fitted to a straight line

 $|\eta| < 1.8$, |z0| < 20cm Good performance for pT > 50 MeV

+ vertexing

+ corrections

Inelastic event selection efficiency 86-90%

10

20

number of reconstructed tracks

30

0.05

0.04

0.03

0.02

0.01

fraction

Charged particles

multiplicity @ 13 TeV

Good agreement between the two approaches and EPOS-LHC

Inelastic events:

 $dNch/d\eta(|\eta|<0.5) = 5.49$

 \pm 0.01(stat)

 ± 0.17 (syst)

Summary

- Excellent CMS performance allows a wide range of (soft) QCD studies
 - forward instrumentation (optional, at special runs)
 - possible combination with TOTEM data (at special runs)
 - very inclusive MinBias trigger
 - extended tracking acceptance with T2 (e.g. $dN_{\rm ch}/d\eta$ measurements for extended η region, 2012)
 - TOTEM Roman Pot taggers
- Underlying events, MPI studies (RunI)
 - track-jets allows to go down to low PT values
- Inclusive diffractive cross-section (RunI)
- Charged particle multiplicaties at 13 TeV
 - first LHC RunII publication!
- Looking forward for more data from RunII also in common CMS-TOTEM data-taking

Backup

Charged particles

multiplicity

Data: Low-PU (~0.04) 2012 data at sqrt(s)= 8 TeV; special run (β *=90m)

Trigger: T2(TOTEM)MinBias trigger -> CMS: $5.3<|\eta|<5.6$

Online time synchronization -> offline data merging (event-by-event)

Selection:

T2: inclusive $(\geq 1 \text{tr OR})$

NSD-enhanced (≥1tr AND)

SD-enhanced (!(≥1tr AND))

 $p_{+}>40 \text{ MeV}$ (performance)

CMS: good vertex (>1 tr)

tracks:

high purity

quality + $|\eta| < 2.2$

10-12%

10-12%

16-18%

 $p_{\scriptscriptstyle +} > 100 \text{ MeV}$

+ corrections + extrapolation to $p_{\perp}=0$ (MC)

SD-enchanced: 26% of inclusive; contains ~50% NSD (MC)

Uncertainties:

CMS:

Total (after averaging half-arms)

Source	Inclusive	NSD-enhanced	SD-enhance	Source	Inclusive	NSD-enhanced	SD-enhanced
Event and primary track selection ($C_{\text{sel}}(\eta)$)	3-5%	4–6%	9–16%	Tracking efficiency data-MC discrepancy	5-6%	5-6%	5–6%
Tracking efficiency	3.9%	3.9%	3.9%	Primary selection (including alignment)	4–5%	4–5%	4–5%
Trigger efficiency	0.1%	0.1%	0.1%	Non-primaries in the double-Gaussian peak	5%	5%	5%
Model dependence	1-4%	1–4%	1–4%	Material effects	3–6%	3–6%	3-6%
Correction to $p_{\rm T} = 0$	0.2%	0.2%	0.2%	High-multiplicity events	3%	3%	3%
Statistical	0.1%	0.1%	0.1%	Event selection	2-3%	2–3%	13-15%
Total	5–7%	6–8%	10-17%	Tracking efficiency dependence	2%	2%	2%
				on energy spectrum and magnetic field			
				Track quality criterion	1%	1%	1%
1				Correction to $p_{\rm T} = 0$	0.5%	0.5%	0.5%
1				Trigger efficiency	0.2%	0.2%	0.2%
				Statistical	0.1%	0.1%	0.1%

Charged particles

multiplicity

No MC for the whole η region and all subsets

NSD enhanced at mid rapidity:

Soft diffractive x-section

CMS PAS FSO-12-005

Data: Low-PU (\sim 0.14) 2010 data at sqrt(s) = 7 TeV

Selection: MinBias with BSC (~total inelastic sample) + LRG topology

At least 2 particle candidates in the BSC acceptance $|\eta| < 4.7$ No vertex requirement (M $_{_{_{X}}} < 100$ GeV)

MC: Pythia8+Minimum Bias Rockfeller model based on renormalized Regge model

Pythia8-4C

Soft diffractive x-section

CMS PAS FSQ-12-005

MC (gen. level): η cut (SD)

CASTOR tag (DD)

$$\xi = M_x^2/s - \xi = \frac{\sum (E^i + p_z^i)}{\sqrt{s}}$$

ξ needs to be corrected for undetected particles

logM.

(a MC based ξ dependent correction)

Soft diffractive x-section

CMS PAS FSO-12-005

