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HIGH ENERGY pp COLLISIONS IN ADDITIVE QUARK MODEL
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High energy (CERN SPS and LHC) pp (pp̄) scattering is treated in the framework of Additive Quark
Model (AQM) together with Pomeron exchange theory. In AQM baryon is treated as a system of three
colored constituent quarks having internal quark-gluon structure and finite radius, r2q ≪ r2p, where rp
is proton radius. The amplitude of constituent quarks scattering is given by one-Pomeron exchange,

M (1)
qq (s, t) = γqq(t) ·

(
s

s0

)αP (t)−1

· ηP (t), ηP (t) = i − tan−1
(
παP (t)

2

)
,

with the Pomeron trajectory αP (t) = αP (0) + α′

P · t specified by the intercept, αP (0), and slope, α′

P ,
values. γqq(t) = g1(t) · g2(t) is the Pomeron coupling to the beam and target particles, g1,2(t) are the
vertices of constituent quark-Pomeron interaction.

The elastic pp (pp̄) scattering amplitude is expressed through the initial, ψ(ki), and final, ψ(ki +Qi),
proton wavefunctions written in terms of the constituent quarks’ momenta ki,

Mpp(s, t) =

∫
dK dK ′ψ∗(k′i +Q ′

i )ψ
∗(ki +Qi)V (Q,Q ′)ψ(k′i)ψ(ki),

dK ≡ d 2k1d
2k2d

2k3 δ
(2)(k1 + k2 + k3), ψ(ki) ≡ ψ(k1, k2, k3).

The interaction vertex V (Q,Q ′) ≡ V (Q1, Q2, Q3, Q
′

1, Q
′

2, Q
′

3) stands for the multipomeron exchange,
Qk and Q ′

l are the momenta transferred to the target quark k or beam quark l by the Pomerons
attached to them, Q is the total momentum transferred in the scattering, Q2 = −t.
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Several AQM diagrams for pp elastic scattering. The straight

lines stand for quarks, the waved lines denote Pomerons.

Diagram (a) is the one of the single Pomeron diagrams,

diagrams (b) and (c) represent double Pomeron exchange

with two Pomeron coupled to the different quark (b) and to

the same quarks (c), q1 + q2 = Q.

The scattering amplitude is presented in
AQM as a sum over the terms with a given
number of Pomerons,

Mpp(s, t) =
∑

n

M (n)
pp (s, t),

where the amplitudes M
(n)
pp collect all di-

agrams comprising various connections of
the beam and target quark lines with n
Pomerons.
AQM permits the Pomeron to connect any
two quark lines only once. It crucially de-
creases the combinatorics leaving the dia-
grams with no more than n = 9 effective
Pomerons.

The Pomeron trajectory is assumed in the simplest form,
(
s

s0

)αP (t)−1

= e∆·ξe−r2q q2 , ξ ≡ ln
s

s0
, r2q ≡ α′ · ξ radius of quark-

quark interaction,
S0 = (9 GeV)2.

In the first order there are 9 equal quark-quark contributions due to one Pomeron exchange between

qq pairs, M
(1)
pp = 9

(
γqqηP (t)e

∆·ξ

)
e−r2q Q2

FP (Q, 0, 0)
2, expressed through the overlap function

FP (Q1, Q2, Q3) =

∫
dK ψ∗(k1, k2, k3)ψ(k1 +Q1, k2 +Q2, k3 +Q3).

1

The function FP (Q, 0, 0) plays a role of proton formfactor for the strong interaction in AQM.

Elastic scattering. The higher orders terms are expressed through the functions FP integrated over
Pomerons’ momenta, tn ≃ t/n,

M (n)
pp (s, t) = in−1

(
γqqηP (tn)e

∆·ξ

)n ∫
d 2q1
π

· · · d
2qn
π

π δ(2)(q1 + . . .+ qn −Q)

× e−r2q (q
2

1
+...+q2n)

1

n!

∑

n connections

FP (Q1, Q2, Q3)FP (Q
′

1, Q
′

2, Q
′

3),

The sum refers to all dis-
tinct ways to connect the
beam and target quark
lines with n Pomerons.

The differential cross section in the normalization adopted here is evaluated as

dσ

dt
= 4π |Mpp(s, t)|2, σtotpp = 8π ImMpp(s, t = 0) optical theorem.

Single and double diffractive dissociation.

a b c

d e

Different final states in the high energy pp collision:
a) elastic pp scattering, b) and c) single diffractive dis-
sociation of first or second proton, d) double diffractive
dissociation, e) process with one qq̄ pair inelastic pro-
duction that does not contribute to the calculated σSD
but can contribute to the experimental value σSD.

dσ

dt
(pp→ p′p′) =

dσ

dt
(pp→ pp)+2

dσ

dt
(pp→ p∗p)+

dσ

dt
(pp→ p∗p∗)

The amplitude of single diffraction dissociation

MSD(s, t) =

∫
dK dK ′ψ∗(k′i +Q ′) ψ̃∗

m(ki +Qi)

×V (Q,Q ′)ψ(k′i)ψ(ki).

The amplitude of double diffraction dissociation

MDD(s, t) =

∫
dK dK ′ψ̃∗

m(k′i +Q ′) ψ̃∗

n(ki +Qi)

×V (Q,Q ′)ψ(k′i)ψ(ki)

To obtain cross section one has to square the module of an appropriate amplitude. Making no dis-
tinction between the individual final states it should be summed up over m for SD process or over m
and n indices for DD process. Using the completeness condition,

∑

n

ψ̃n(pi +Q ′′

i ) ψ̃
∗

n(ki +Qi) = δ(2)(pi +Q ′′

i − ki −Qi)

along with the same condition for the index m we get

dσel
dt

+ 2
dσSD

dt
+
dσDD

dt
=

∑

m,n

|M (m,n)
p ′p ′ |2(s, t)

|M (m,n)
p ′p ′ |2 =

(
γqqe

∆·ξ

)m+n[
iηP (tm)

]m [
−iη∗P (tn)

]n

×
∫
d 2q1
π

· · · d
2qm
π

π δ(2)(q1 + . . .+ qm −Q)

× d 2qm+1

π
· · · d

2qm+n

π
π δ(2)(qm+1 + . . .+ qm+n −Q)

× e−r2
q
(q21+...+q2

m+n
)

× 1

m!

1

n!

∑

m,n connections

FP (Q1, Q2, Q3)FP (Q
′

1, Q
′

2, Q
′

3).

dσSD

dt
+
dσel
dt

=
∑

m,n

|M (m,n)
pp ′ | 2(s, t),

|M (m,n)
pp ′ |2 =

(
γqqe

∆·ξ

)m+n[
iηP (tm)

]m [
−iη∗P (tn)

]n

×
∫
d 2q1
π

· · · d
2qm
π

π δ(2)(q1 + . . .+ qm −Q)

× d 2qm+1

π
· · · d

2qm+n

π
π δ(2)(qm+1 + . . .+ qm+n −Q)

× e−r2
q
(q21+...+q2

m+n
)

× 1

m!

1

n!

∑

m,n connections

FP (Q1, Q2, Q3)

×FP (Q
′

1, Q
′

2, Q
′

3) FP (Q
′′

1 , Q
′′

2 , Q
′′

3 )
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Numerical results.

The overlap function FP is evaluated through the transverse part of the quarks’ wavefunction, which
has been taken in a simple form of two gaussian packets,

ψ(k1, k2, k3) = N [ e−a1(k21+k2
2
+k2

3
) + C e−a2(k21+k2

2
+k2

3
)].

The Pomeron parameters are

∆ = 0.107, α′ = 0.31GeV−2, γqq = 0.44GeV−2,

and the parameters of matter distribution in the proton are

a1 = 4.8GeV−2, a2 = 1.02GeV−2, C = 0.133.

Note that the same set of the Pomeron parameters describes proton and antiproton scattering, there-
fore both pp and pp̄ data have been commonly used to fix their values.

The model gives a reasonable description of elastic scattering experimental data both for pp collisions
at

√
s = 7 TeV and pp̄ collisions at

√
s = 546 GeV.
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Figure 1: The differential cross section of elastic pp̄ scattering at
√

s = 546 GeV (left panel) and for the elastic pp

collisions at
√

s = 7 TeV (right panel, solid line) compared to the experimental data. The dotted line at the right panel
shows the predicted elastic pp cross section at

√

s = 13 TeV. The experimental points have been taken from [4, 5, 6, 7].

The results for the SD and DD cross sections are presented in the Table.

√
s σel (mb) σSD(mb) σDD(mb)

546 GeV 14.3 2.3 2.6

7 TeV 27.3 4.3 3.9

13 TeV 31.6 5.4 4.9

The SD cross sections come out to be rather small,
σSD/σel ≃ 15− 18%, that matches perhaps the ex-
perimental results at LHC energies [1, 2, 3]. The
total diffraction cross section is approximately half
the elastic one, 2σSD + σDD ≃ σel/2, within the
range of available energy dependence of the proba-
bility of diffractive to elastic scattering.

The ratio σDD/σel is not quadratically small compared to σSD/σel. The reason for this comes in AQM
from an extra third formfactor FP in the SD cross section (1) compared to the two formfactors in the
DD formula. On the other hand the connection between diffractive cross section calculated in AQM
and the experimental data is not straightforward since AQM comprises only a part of the processes
involved in the scattering.

Motivated by the recently announced new LHC run we present also the predictions for the elastic pp
scattering and diffractive dissociation at

√
s = 13 TeV. In particular, we expect the total cross section

3

σ(pp)tot = 110 mb, the parameter of the elastic slope cone (dσ/dt ∼ exp(−B · t)) B = 21.8 GeV−2,
the minimum position at |t| = 0.45 GeV2 while our results for the differential cross section, dσel/dt,
are shown in Fig. 1.
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Figure 2: The cross section of single (solid line)

and double (dotted line) diffractive dissociation in

pp̄ scattering at
√

s = 546 GeV. The experimental

SD points have been taken from [8].

Fig. 2 shows our results for the differential cross sec-
tions dσSD/dt and dσDD/dt at

√
s = 546 GeV. The

slope of the differential cross section at |t| ≃ 0.2 GeV2

is BSD ≃ 10 GeV−2 for the single diffractive diffrac-
tion and BDD ≃ 3 GeV−2 for the double diffractive
dissociation. These values are essentially smaller than
the elastic slope that is about 15 GeV−2 [9].
Unfortunately we are unable to predict at small |t| <
0.1 Gev2 because of the unknown effects of confine-
ment that could lead to the transition between the
ground and excited states. The region |t| > 1 Gev2

is beyond the reach of our model as well since the
internal structure of the constituent quarks can not
be more ignored there. The diffractive cross section
behavior in the intermediate interval is in reasonable
agreement with the experimental data.
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