Standard Measurements of the Top Quark Mass

LHCP 2015

Nathan Mirman for the ATLAS and CMS collaborations

Aug 31, 2015

Introduction

Channels for m_t measurements

Lepton+jets: kinematic fit (CMS 8 TeV)

- Select a single high p_{T} lepton, ≥ 4 jets, exactly 2 b tags.
- Utilize a kinematic fit for event reconstruction.

- Increases the fraction of correct jet-parton assignments.
- Improves the reconstructed m_t resolution.
- Vary object energies within their resolutions, impose the constraints:

 $m_W = 80.4$ GeV, $m_t = m_{tbar}$.

Lepton+jets: 2D likelihood fit (CMS 8 TeV)

Results: lepton+jets (CMS 8 TeV) CMS PAS TOP-14-001

In-situ JES calibration reduces total uncertainty from **1.29** to **0.75 GeV**.

 p_T and η-dependent JES uncertainty is reduced from 1.17 to 0.18 GeV.

Dominant systematic uncertainties:

- Flavor-dep. JSF: 0.41 GeV.
- Pile up: 0.27 GeV.
- Jet energy resolution: 0.26 GeV.

Results: all-hadronic final state (CMS 8 TeV)

- Similar techniques to CMS lepton+jets result.
- Select ≥6 jets and ≥2 b tags.
- Kinematic fit to increase the fraction of correct ttbar permutations and improve m_t^{reco} resolution.
- **2D likelihood fit** with in-situ JES calibration.
- Dominant systematics:
 - p_T and η-dep. JES: 0.28 GeV
 - Flavor-dep. JSF: 0.36 GeV.
 - Pile up: 0.31 GeV
 - Background: 0.22 GeV

Multijet background is modeled with event mixing technique.

Lepton+jets: 3D likelihood fit (ATLAS 7 TeV)

ATLAS, Eur. Phys. J. C (2015) 75:330

- Select 1 high- p_{T} lepton, high MET, ≥4 jets, ≥1 b tag.
 - Separate fits are conducted for 1 b tag and ≥ 2 b tag events.
- Reconstruct ttbar system with kinematic likelihood fit.
 - Similar to the technique used by CMS.
- Conduct a **3D likelihood fit** with observables: m_{top}^{reco}, m_W^{reco} and R_{ba}.
 - In-situ calibration of JES (m_W^{reco}) and bJES (R_{bq}), relative to udsg.

$$R_{bq}^{\text{reco,2b}} = \frac{p_T^{b_{had}} + p_T^{b_{lep}}}{p_T^{Wjet_1} + p_T^{Wjet_2}}$$

Results: lepton+jets channel (ATLAS 7 TeV) ATLAS, Eur. Phys. J. C (2015) 75:330

 $m_t = 172.33 \pm 0.75 \text{ (stat+JSF+bJSF)} \pm 1.02 \text{ (syst)} \text{ GeV}$ $JSF = 1.019 \pm 0.003 \text{ (stat)} \pm 0.027 \text{ (syst)}$ $bJSF = 1.003 \pm 0.008 \text{ (stat)} \pm 0.023 \text{ (syst)}$

A significant reduction of the **bJES uncertainties** is achieved by the 3D fit approach. Major systematics:

- **p_T and η-dep. JES**: 0.58 GeV.
- → **bJES**: 0.06 GeV.
 - b tagging: 0.50 GeV.
 - ISR/FSR: 0.32 GeV.

Dilepton Channel (ATLAS 7 TeV)

Eur. Phys. J. C (2015) 75:330

- Select 2 leptons, high MET,
 ≥2 jets, 1 or 2 b tags.
- 2 neutrinos → underconstrained system
- Conduct likelihood fit with m_{lb} observable
 - Invariant mass between lepton, b jet pairs.
- Separate m_{lb} template shapes are obtained for signal and background.

 \mathcal{V}

1/

D

h

t

10

Results: dilepton channel (ATLAS 7 TeV) Eur. Phys. J. C (2015) 75:330

$$m_t = 173.79 \pm 0.54 \text{ (stat)} \pm 1.30 \text{ (syst)} \text{ GeV}$$

- In-situ JES calibration not implemented in the dilepton channel.
- Small sensitivity to backgrounds due to dilepton selection (0.1 GeV).
- Dominant systematics:
 - **JES:** 0.75 GeV.
 - **bJES:** 0.68 GeV.
 - Parton showering & hadronization: 0.53 GeV.
 - ISR/FSR: 0.47 GeV.

Single top enriched events (ATLAS 8 TeV) ATLAS CONF-2014-055

- Conduct a binned likelihood fit with the m_{lb} observable.
 - Signal (single top + ttbar) and background shapes modeled separately.
- Single-top versus ttbar event topology:
 - Less combinatorial background.
 - Lower S/B.
 - Different color flow and production energy scale.

- Select 1 high-p_T lepton, high MET, ≥2 jets, 1 b tag.
- Further selection is conducted using a neural network with 12 input variables.

Results: single top (ATLAS 8 TeV) ATLAS CONF-2014-055

$$m_t = 172.2 \pm 0.7 \text{ (stat)} \pm 2.0 \text{ (syst)} \text{ GeV}$$

- Results are complementary to ttbar measurements.
 - Different regime for single top production.

ATLAS and CMS Combinations

- Analyses combined using Best Linear Unbiased Estimator (BLUE) method.
 - Accounts for correlations between all uncertainties.
- Analyses reviewed today
 - So far, separate combinations by ATLAS and CMS.
- Most precise single combination uses CMS 7+8 TeV results.
 - Total uncertainty is now below 1 GeV.

Summary and Conclusions

- ATLAS and CMS have provided measurements of the top quark mass in the ttbar all-hadronic, lepton+jets, and dilepton channels, as well as single top enriched events (ATLAS only).
- In the lepton+jets and all-hadronic channels, measurements utilize techniques to reduce their sensitivity to the JES.
 - 2D likelihood fit with the m_t^{reco} and m_W^{reco} observables (CMS lepton+jets & all-hadronic).
 - 3D likelihood fit with the m_t^{reco}, m_W^{reco} and R_{bq} observables (ATLAS lepton+jets).
 - Also provides sensitivity to **bJES**.
- Recent combinations by ATLAS and CMS achieve sub-GeV precision on the value of the top quark mass.

BACKUP

Nathan Mirman

Additional details: lepton+jets (CMS 8 TeV) CMS PAS TOP-14-001

 $m_{+} = 172.04 \pm 0.19 \text{ (stat+JSF)} \pm 0.75 \text{ (syst)} \text{ GeV}$ 2D fit w/ in-situ $JSF = 1.007 \pm 0.002 \text{ (stat)} \pm 0.012 \text{ (syst)}$ **JES** calibration 1D fit $m_t = 172.66 \pm 0.11 \text{ (stat)} \pm 1.29 \text{ (syst)} \text{ GeV}$ (for crosscheck)

2D fit improves p_T and η -dependent JES uncertainty from 1.17 to 0.18 GeV.

Systematic uncertainties	Δm_t^{2D} (GeV)
p_T and η -dep. JES	0.18
Pile up	0.27
Detector modeling	0.28
Method & backgrounds	0.15
Flavor dep. JSF	0.41
b frag. & decays	0.17
Signal modeling	0.39
Total	0.75

Additional details: all-hadronic (CMS 8 TeV)

2D fit improves p_T and η -dependent JES uncertainty from 0.86 to 0.28 GeV.

Additional details: lepton+jets channel (ATLAS 7 TeV)

ATLAS, Eur. Phys. J. C (2015) 75:330

- bJES uncertainty significantly reduced due to 3D fit approach.
- Dominant uncertainties are due to JES and b tagging (0.50 GeV).

Systematic uncertainties	Δm_t (GeV)
Jet energy scale	0.58
b jet energy scale	0.06
Pile up	0.02
Detector modeling	0.58
Method and backgrounds	0.33
Signal modeling	0.53
Total	1.22

Nathan Mirman

LHCP Conference – 29 August 2015

Additional details: lepton+jets channel (ATLAS 7 TeV) ATLAS, Eur. Phys. J. C (2015) 75:330

Additional details: dilepton channel (ATLAS 7 TeV)

Eur. Phys. J. C (2015) 75:330

$$m_t = 173.79 \pm 0.54 \text{ (stat)} \pm 1.30 \text{ (syst)} \text{ GeV}$$

- Small sensitivity to backgrounds due to very clean dilepton signal sample.
- Dominant systematics due to JES and bJES, parton showering & hadronization (0.53 GeV), and ISR/FSR (0.47 GeV).

Additional details: single top (ATLAS 8 TeV) ATLAS CONF-2014-055

- Dominant systematic uncertainties due to jet energy scale, W+jet background shape & normalization, and t-channel parton shower & hadronization modeling.
- Complimentary to ttbar-based measurements due to lower Q² regime, different backgrounds and color flow.

 $m_t = 172.2 \pm 0.7 \text{ (stat)} \pm 2.0 \text{ (syst)} \text{ GeV}$

Systematic uncertainties	Δm _t (GeV)
Jet energy scale & pile up	1.5
Detector modeling	0.5
W+jet background	0.5
Other backgrounds	0.5
t-channel modeling	0.8
Other top signals modeling	0.4
Total	2.0