LHCb early measurements focusing on B and charm production

Alex Pearce on behalf of the LHCb collaboration

Monday 31st August 2015 LHCP 2015, Saint Petersburg

Motivation

- Run 2 of the Large Hadron Collider has begun, operating at $\sqrt{s}=13\,{
 m TeV}$
- Permits new tests of QCD, which LHCb can perform in a unique kinematic region

Motivation

- Run 2 of the Large Hadron Collider has begun, operating at $\sqrt{s}=13\,{
 m TeV}$
- Permits new tests of QCD, which LHCb can perform in a unique kinematic region

J/ψ production cross-sections

- Probes pertubative QCD, at $c\overline{c}$ production, and non-pertubative QCD, at J/ψ hadronisation
- Can help distinguish between non-relativistic QCD^1 and colour singlet model^2
- Used to measure $b\overline{b}$ cross-section using J/ψ originating from $B\text{-decays}^3$
- Measured previously by LHCb at $\sqrt{s}=$ 2.76, 7, and 8 TeV^{4,5,6}

¹Shao et al., JHEP 1505 (2015) 103

²Kartvelishvili et al., Sov. J Nucl. Phys. 28 (1978) 678

³Cacciari et al., JHEP 9805 (1998) 007

⁴LHCb collaboration, JHEP 1302 (2013) 041

⁵LHCb collaboration, Eur.Phys.J.C71 (2011) 1645

⁶LHCb collaboration, J. High Energy Phys. 06 (2013) 064

Motivation

- + Run 2 of the Large Hadron Collider has begun, operating at $\sqrt{s}=13\,\mathrm{TeV}$
- Permits new tests of QCD, which LHCb can perform in a unique kinematic region

$c\overline{c}$ production cross-sections

- Constrain parton distribution functions at low x^1
- Estimate charm backgrounds in atmospheric neutrino experiments²
 - $\sqrt{s} = 7(13)$ TeV at LHC corresponds to 26(90) PeV neutrinos
- Measured previously by LHCb at $\sqrt{s}=7\,{\rm TeV^3}$

¹PROSA collaboration, arXiv:1503.04581

²IceCube collaboration, Phys. Rev. Lett. 113, 101101 (2014)

³LHCb collaboration, Nuclear Physics, Section B 871 (2013), pp. 1-20

Motivation

- + Run 2 of the Large Hadron Collider has begun, operating at $\sqrt{s}=13\,\text{TeV}$
- Permits new tests of QCD, which LHCb can perform in a unique kinematic region
- Will present measurements of J/ψ , $b\overline{b}$, and $c\overline{c}$ production cross-sections

VELO Primary and secondary vertex, impact parameter

- VELO Primary and secondary vertex, impact parameter
- TT, IT, OT Momentum of charged particles

- VELO Primary and secondary vertex, impact parameter
- TT, IT, OT Momentum of charged particles

VELO Primary and secondary vertex, impact parameter

TT, IT, OT Momentum of charged particles

RICHs K^{\pm} , π^{\pm} , and p/\overline{p} PID

- VELO Primary and secondary vertex, impact parameter
- TT, IT, OT Momentum of charged particles
 - RICHs K^{\pm} , π^{\pm} , and p/\overline{p} PID

MUON Trigger on high $p_{\rm T} \ \mu^{\pm}$, add PID

VELO Primary and secondary vertex, impact parameter

TT, IT, OT Momentum of charged particles

RICHs K^{\pm} , π^{\pm} , and p/\overline{p} PID

MUON Trigger on high $p_{\rm T} \ \mu^{\pm}$, add PID

VELO Primary and secondary vertex, impact parameter

TT, IT, OT Momentum of charged particles RICHs K^{\pm} , π^{\pm} , and p/\overline{p} PID MUON Trigger on high $p_{\rm T} \ \mu^{\pm}$, add PID SPD/PS Separate γ/e^{\pm} and h^{\pm}/e^{\pm}

VELO Primary and secondary vertex, impact parameter

TT, IT, OT Momentum of charged particles RICHs K^{\pm} , π^{\pm} , and p/\overline{p} PID $\begin{array}{ll} \mbox{MUON Trigger on high $p_{\rm T}$ μ^{\pm}, add PID}\\ \mbox{SPD/PS Separate γ/e^{\pm} and h^{\pm}/e^{\pm} }\\ \mbox{ECAL/HCAL EM/hadronic energy} \end{array}$

LHCb trigger

- Highly optimised software trigger in Run 2
- Alignment and calibration is now done in real time
- Second software stage of trigger deferred until alignment and calibration is complete
- Online and offline reconstruction performance now identical
- Allows for direct analysis on trigger output
- Very fast analysis turnaround, "Turbo stream"
- See Roel Aaij's talk on LHCb trigger in Run 2, and Varvara Batozskaya's poster on the real time alignment

• Two different analyses following a similar strategy, each with master relation

$$\frac{d^2\sigma_i(H)}{dp_{\mathsf{T}}dy} = \frac{1}{\Delta p_{\mathsf{T}}\Delta y} \cdot \frac{N_i(H \to f + \text{c.c.})}{\varepsilon_{i,\mathsf{tot}}(H \to f) \cdot \Gamma(H \to f) \cdot \mathcal{L}_{\mathsf{int}}}$$

•
$$\mathcal{L}_{int} = (3.05 \pm 0.12) \text{ pb}^{-1}$$
 for J/ψ and $b\overline{b}$, $\mathcal{L}_{int} = (4.98 \pm 0.19) \text{ pb}^{-1}$ for $c\overline{c}$

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal N_i , produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal, produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal, produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

		$c\overline{c}$ cross-section	LHCb-PAPER-2015-041
J/ψ cross-section	LHCb-PAPER-2015-037		
• $J/\psi \to \mu^- \mu^+$			

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal, produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

J/ψ cross-section	LHCb-PAPER-2015-037
• $J/\psi \rightarrow \mu^- \mu^+$	

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal, produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

C

J/ψ cross-section	LHCb-PAPER-2015-037
• $J/\psi \rightarrow \mu^- \mu^+$	
• Use pseudo-lifetime t_z	

•
$$D^0 \rightarrow K^- \pi^+$$
, $D^+ \rightarrow K^- \pi^+ \pi^+$,
 $D^+_s \rightarrow K^- K^+ \pi^+$, and $D^{*+} \rightarrow D^0 \pi^+$

$$t_z = \frac{(z_{J/\psi} - z_{\mathsf{PV}}) \cdot M_{J/\psi}}{p_z}$$

- Need to reconstruct initial state hadron H in some final state f
- Count prompt signal, produced directly from proton-proton interaction region
 - Need to disentangle prompt from secondary signal, where H originates from B-decay

J/ψ cross-section LHCb-PAPER-2015-037 • $J/\psi ightarrow \mu^- \mu^+$

• Use pseudo-lifetime t_z

$t_z = \frac{(z_{J/\psi} - z_{\mathsf{PV}}) \cdot M_{J/\psi}}{p_z}$

$c\overline{c}$ cross-section

• $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+_s \rightarrow K^-K^+\pi^+$, and $D^{*+} \rightarrow D^0\pi^+$

LHCb-PAPER-2015-041

• Use impact parameter (IP) significance

Yield extraction

 J/ψ cross-section

- Two-dimensional unbinned extended maximum likelihood fits
- Performed separately in each p_{T} -y bin

• Separate signal from combinatorial background with $m(\mu^-\mu^+)$ fit

• Separate prompt and secondary signal with *t_z* fit

$$t_z = \frac{(z_{J/\psi} - z_{\rm PV}) \cdot M_{J/\psi}}{p_z}$$

Yield extraction

 $c\overline{c}$ cross-section

- Two one-dimensional binned extended maximum likelihood fits
- Each performed simultaneously across all $p_{\rm T}$ -y bins, $D^0 o K^- \pi^+$ shown here

• Separate signal from combinatorial background with $m(H_c)$ fit

- Separate prompt and secondary signal with $\ln \chi^2_{\rm IP}$ fit
- Combinatorial $\chi^2_{\rm IP}$ shape from mass sidebands

 J/ψ data

Production cross-section for prompt J/ψ

Production cross-section for J/ψ from B-decays

 J/ψ cross-section in LHCb acceptance

$$\begin{split} \sigma_{\mathsf{Prompt}} &= 15.30 \pm 0.03(\mathsf{stat}) \pm 0.86(\mathsf{syst})\, \mathsf{\mu b} \\ \sigma_{\mathsf{from-}B} &= 2.34 \pm 0.01(\mathsf{stat}) \pm 0.13(\mathsf{syst})\, \mathsf{\mu b} \end{split}$$

 $b\overline{b}$ cross-section with 4π extrapolation* $\sigma = 515 \pm 2(\text{stat}) \pm 53(\text{syst}) \, \mu\text{b}$

 * 'Naive' extrapolation factor computed with LHCb tuning of PYTHIA 6

 J/ψ comparison with theory

Comparison with theory for prompt J/ψ Comparison with theory for J/ψ from B-decays 10° 10^{-10} $d\sigma/dp_{T} [nb/(GeV/c)]$ $d\sigma/dp_T [nb/(GeV/c)]$ 10^{-10} 10^{2} 10^{2} 10 → LHCb prompt J/ψ, 2.0< y <4.5</p> LHCb J/ w-from-b, 2.0< v <4.5 10 NROCD, 2.0< v <4.5 FONLL, 2.0< v <4.5 10 10 $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c] $p_{\rm T}(J/\psi)$ [GeV/c]

- Integrated in range 2 < y < 4.5
- Compare prompt measurements with NRQCD predictions¹
- Compare J/ψ -from-B measurements with FONLL predictions²

¹Shao et al., JHEP 1505 (2015) 103

²Cacciari et al., JHEP 1210 (2012) 137

Cross-section measurements J/ ψ 13 TeV vs. 8 TeV

Comparison with theory for prompt J/ψ Comparison with theory for J/ψ from B-decays $\mathrm{R_{13/8}(d\sigma/dp_T)}$ $m R_{13/8}(d\sigma/dp_{_{T}})$ LHCb LHCb $\sqrt{s} = 13 \text{ TeV} / \sqrt{s} = 8 \text{ TeV cross-section ratio}$ $\sqrt{s} = 13 \text{ TeV} / \sqrt{s} = 8 \text{ TeV}$ cross-section ratio – NRQCD FONLL 10 10 $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c] $p_{_{\mathrm{T}}}(J/\psi)$ [GeV/c]

- Integrated in range 2 < y < 4.5
- Compare prompt measurements with NRQCD predictions¹
- Compare J/ψ -from-B measurements with FONLL predictions²

¹Shao et al., JHEP 1505 (2015) 103

²Cacciari et al., arXiv:1507.06197

- Measure individual charm hadron cross-sections in p_{T} -y bins
- Compare with several theory predictions
 - POWHEG+NNPDF3.0L¹
 - FONLL²
 - General-mass variable-flavor-number (GMVFNS)³
- Combine with fragmentation fractions to get $c \overline{c}$ cross-sections
 - Extrapolate in to bins with no measurements using theory predictions

¹Gauld et al., arXiv:1506.08025

²Cacciari et al., arXiv:1507.06197

³Spiesberger et al., arXiv:1202.0439

- Measure individual charm hadron cross-sections in p_{T} -y bins
- Combine with fragmentation fractions to get $c \overline{c}$ cross-sections

- Measure individual charm hadron cross-sections in p_{T} -y bins
- Combine with fragmentation fractions to get $c \overline{c}$ cross-sections

- Measure individual charm hadron cross-sections in p_{T} -y bins
- Combine with fragmentation fractions to get $c \overline{c}$ cross-sections

- Measure individual charm hadron cross-sections in p_{T} -y bins
- Combine with fragmentation fractions to get $c \overline{c}$ cross-sections

$c\overline{c}$ data

- Measure individual charm hadron cross-sections
- Combine with fragmentation fractions from e^+e^- colliders for $c\overline{c}$ cross-sections
 - Extrapolate in to bins with no measurements using theory predictions
- LHCb acceptance defined as
 - 0 < p_T < 8 GeV
 - 2 < y < 4.5
- Omit small D_s^+ and D^{*+} measurements

 $c\overline{c}$ production cross-section

 $\sigma(c\overline{c}) = 2850 \pm 3(\text{stat}) \pm 180(\text{syst}) \pm 140(\text{frag})\,\mu\text{b}$

Cross-section measurements $c\overline{c}$ 13 TeV vs. 7 TeV

Ratio of p_{T} -y bin cross-sections for D^{0}

Ratio of p_T -y bin cross-sections for D^+

Cross-section measurements $c\overline{c}$ 13 TeV vs. 7 TeV

Ratio of p_{T} -y bin cross-sections for D^{*+}

Conclusions

- Excellent performance of detector, and new Turbo trigger, allows for very quick turnaround
- LHCb measured several production cross-section measurements at $\sqrt{s} = 13$ TeV:
 - Prompt J/ψ
 - J/ψ -from-B
 - Total $b\overline{b}$
 - D^0 , D^+ , D^+_s , D^{*+}
 - Total *c* \overline{c}
- Two papers to be released soon:
 - LHCb-PAPER-2015-037 for J/ψ and $b\overline{b}$
 - LHCb-PAPER-2015-041 for $c\overline{c}$

Backup

J/ψ cross-section as a function of \sqrt{s}

The J/ψ production cross-section for prompt J/ψ (left) and J/ψ -from-B (right) as a function of the proton-proton centre-of-mass energy (\sqrt{s}), as measured in the LHCb acceptance. Comparison with FONLL prediction¹ shown for secondary J/ψ measurements.

¹Cacciari et al., JHEP 1210 (2012) 137

Systematic uncertainties

J/ψ production cross-sections

Relative systematic uncertainties, in percent, on the J/ψ cross-section measurements. The uncertainty from the t_z fit only affects J/ψ -from-b measurements.

Quantity	Systematic uncertainty (%)			
Luminosity	3.9			
L0 trigger	0.1-5.9			
HLT1 trigger	1.5			
Muon ID	1.8			
Tracking	1.1-3.4			
Radiative tail	1			
Offline selections	0.36			
Signal shape	1			
$\Gamma(J/\psi ightarrow \mu^- \mu^+)$	0.6			
<i>p</i> _T - <i>y</i> spectrum	0.1-5.0			
MC statistics	0.3-5.0			
<i>t_z</i> fits	0.1			

Systematic uncertainties

 J/ψ production cross-sections

Relative systematic uncertainties, in percent, on the open charm meson cross-section measurements. The magnitude of the uncertainty may vary across p_{T} -y bins, as indicated.

	D^0	D^+	D_s^+	D^{*+}	Bins	Modes
Luminosity			3.9		100	100
Tracking	3–5	5–11	4-11	5-12	90-100	90-100
Branching fractions	1.2	2.1	4.5	1.5	100	0–95
MC sample size	2–50	1–50	3–180	2-170	-	-
MC modelling	2	1	1	1	-	-
PID sample size	0-1	0-1	0-1	0-1	0-100	-
PID weighting	0–42	0-11	0–18	0-15	100	100
Fit shapes	1–3	1–3	1-2	1-2	-	-