

Top Quark Properties at the LHC Most recent results

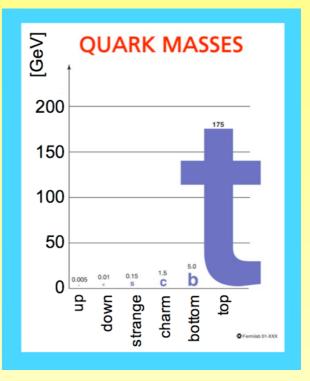
Frédéric Déliot CEA/Irfu-Saclay

On behalf of the ATLAS and CMS collaborations

LHCP 2015, Saint Petersburg, 2 September 2015

Why do we study the top quark ?

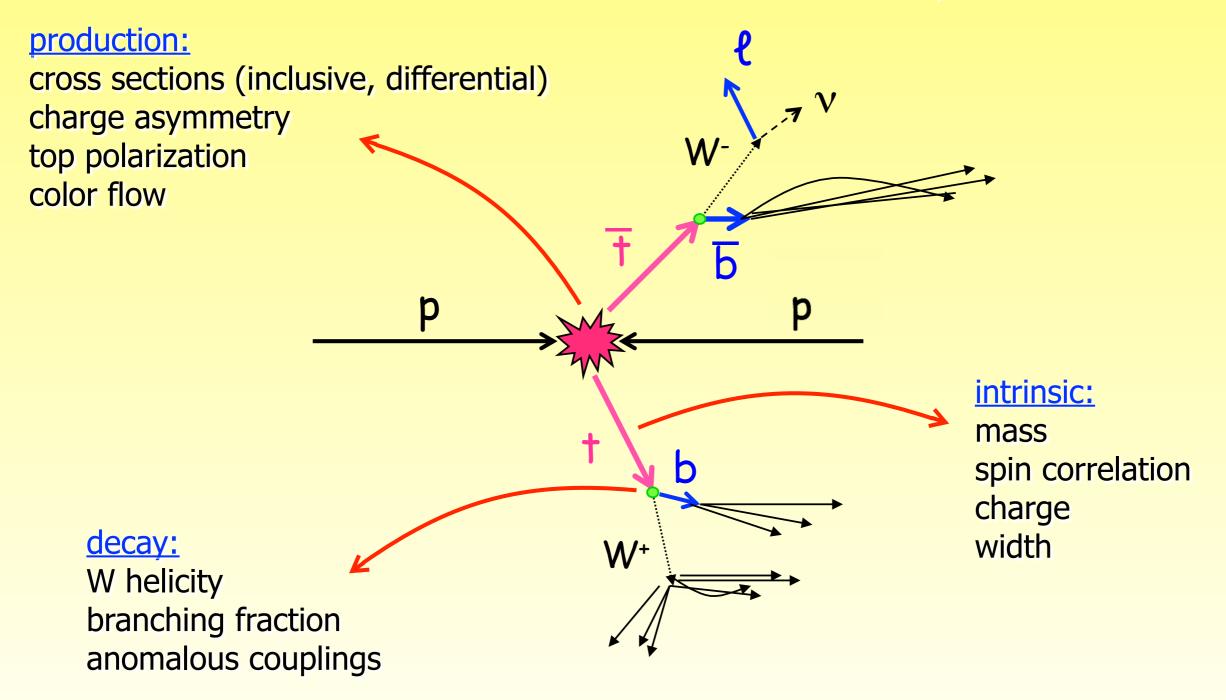
• The top quark is the heaviest elementary particle:


$$\mathcal{L}_{\text{Yukawa}} = -\lambda_t \overline{\psi_{Lt}} \Phi \psi_{Rt}$$

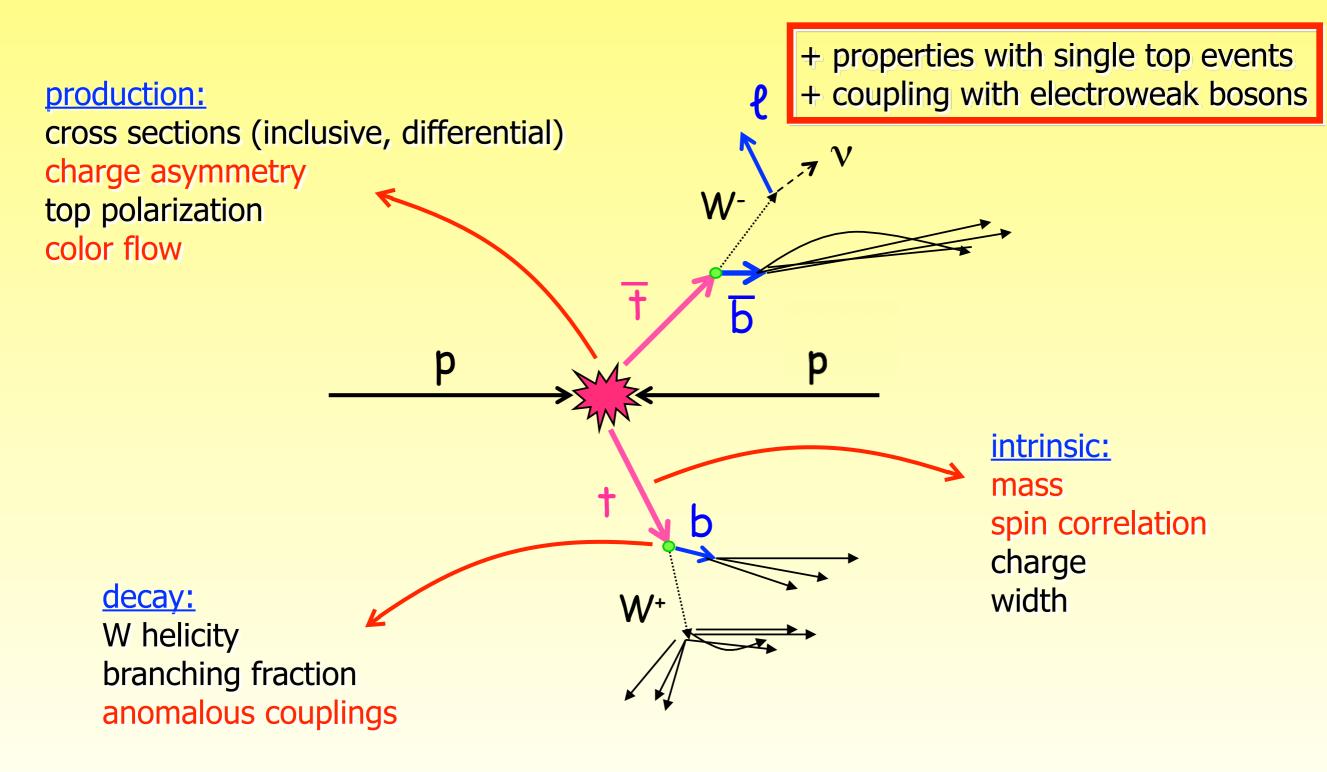
$$\lambda_t \approx 1 \text{ !!}$$

$$m_t \gg m_b$$

$$\tau \approx 3.10^{-25} s \ll \tau_{\text{decorrel}} \approx 10^{-21} s$$


$$\tau \approx 3.10^{-25} s \ll \Lambda_{\text{QCD}}^{-1}$$

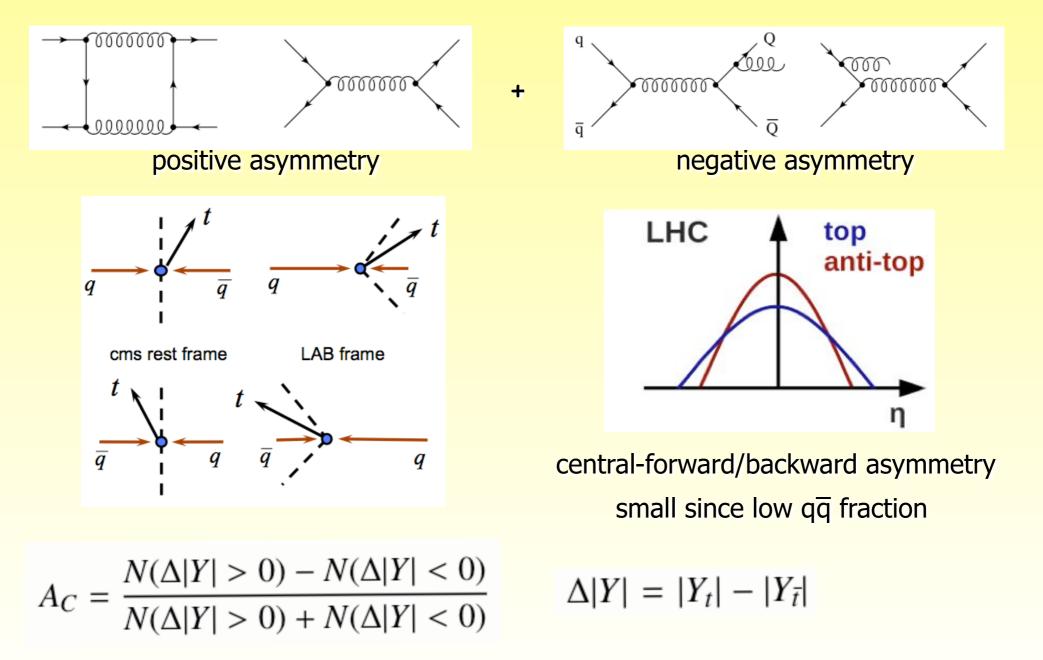
- The top quark is unique:
 - coupling to the Higgs boson close to 1: special role in the electroweak symmetry breaking ?
 - decay before hadronizing: unique way to observe a bare quark
- Special sector to search for new physics:
 - top quark properties can be "altered" by new physics (Z', charged Higgs, SUSY, ...)


Top quark properties

example from $t\overline{t}$ events

Does the heaviest elementary particle behave as predicted by the Standard Model ?

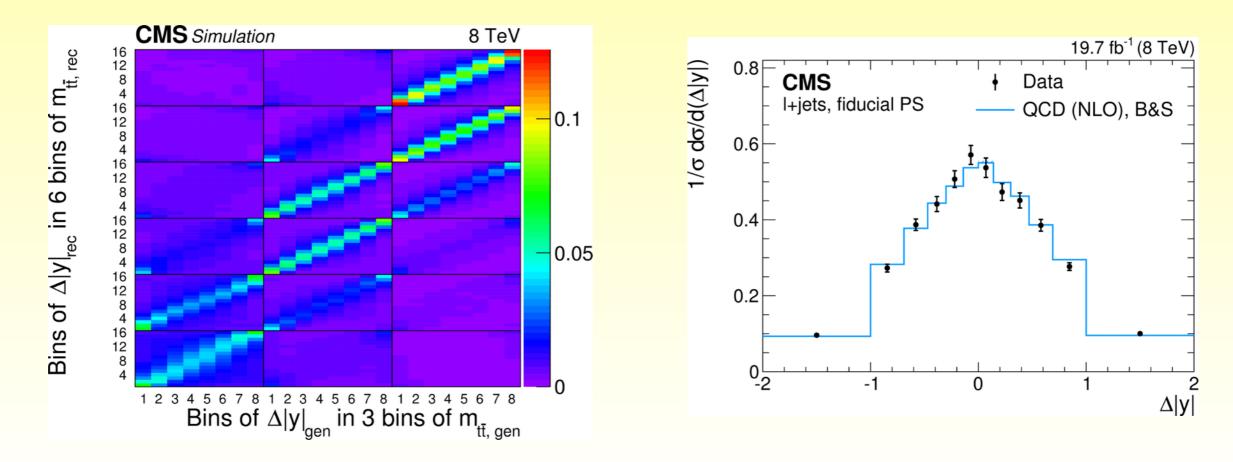
Top quark properties



Does the heaviest elementary particle behave as predicted by the Standard Model ?

Production and intrinsic properties

Top-antitop charge asymmetry at the LHC

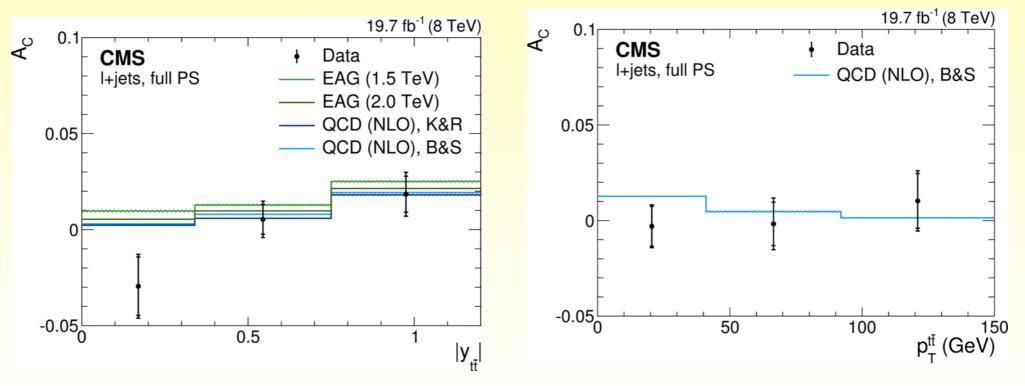

- At NLO, QCD predicts an asymmetry for tt produced via qq initial state
 - the top quark is predicted to be emitted preferably in the direction of the incoming quark
 - gg remains symmetric
 - this asymmetry can be modified by new physics (Z', axigluons, ...)

CMS tt charge asymmetry measurement

- Several measurements
 - inclusive and differential (vs |yttl, mtt, pTtl; enhance new physics sensitivity)
 - fiducial (minimize extrapolation) and full phase space
- Procedure (lepton+jets channel)
 - reconstruction of the t and \overline{t} four-momenta (likelihood criteria)
 - background subtraction (fit M₃ and MT_W)
 - correction for resolution/selection effects (unfolding through generalized matrix inversion with regularization)
 - acceptance correction to the fiducial or full phase space (diagonal matrix)

CMS tt charge asymmetry results

1000

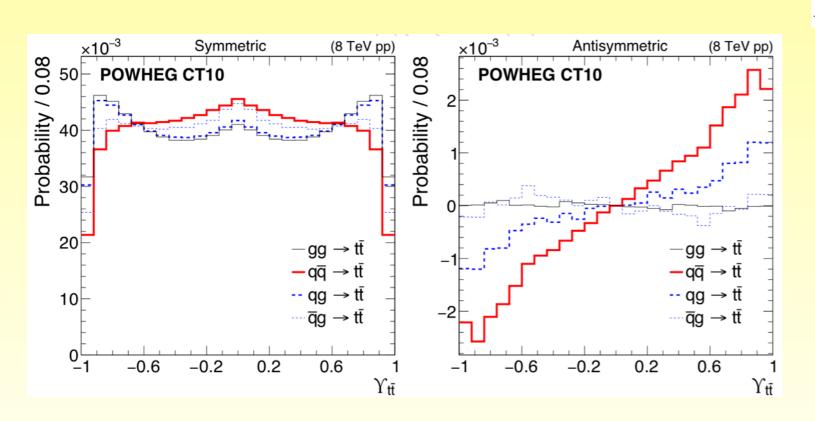

m_# (GeV)

500

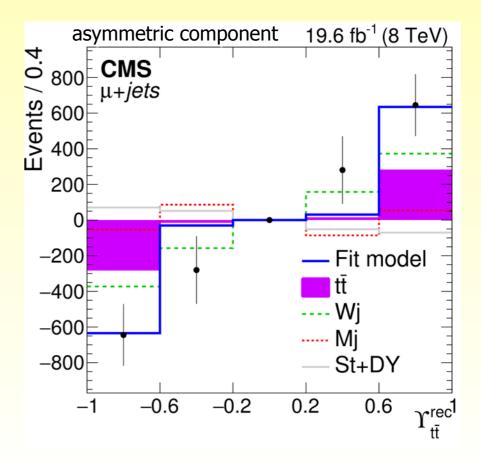
				19.7 fb ⁻¹ (8 TeV)
	Asymmetry ($A_{\rm C}$)	AC	CMS	Data Offective avial
Reconstructed	0.0036 ± 0.0017 (stat)		0.2 - 1+jets, full	
Background-subtracted	0.0008 ± 0.0023 (stat)		_ , ,	—— EAG (2.0 TeV) coupling
Corrected for migration effects	$-0.0042\pm 0.0072({ m stat})$		_	QCD (NLO), B&S
Fiducial phase space	-0.0035 ± 0.0072 (stat) ± 0.0031 (syst)		0.1	
Theoretical prediction [Bernreuther, Si] [42]	0.0101 ± 0.0010		-	
Full phase space	0.0010 ± 0.0068 (stat) ± 0.0037 (syst)		_	
Theoretical prediction [Kühn, Rodrigo] [9]	0.0102 ± 0.0005		-	
Theoretical prediction [Bernreuther, Si] [42]	0.0111 ± 0.0004		0	
Statistical uncertainty dom	inates		- I	I I I

Statistical uncertainty dominates Largest systematic uncertainties: JES, unfolding

The measurement at high $m_{t\bar{t}}$ excludes new physics below 1.5 TeV at 95% CL



F. Déliot, LHCP 2015, 2-SEP-15


Latest CMS tt charge asymmetry result

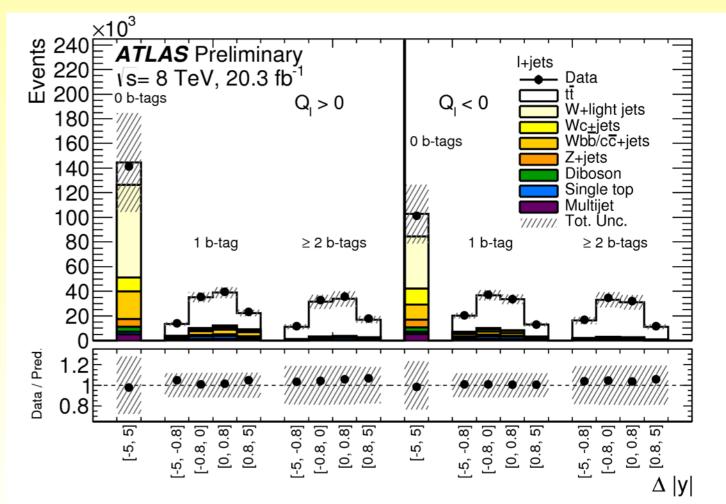
- Other analysis method
 - same data set (lower jet pt cut: pt>20 GeV)
 - template fit of the symmetric and asymmetric part of the reconstructed $Y_{t\bar{t}}$ distribution (no unfolding) $\mathcal{Y}_{t\bar{t}} = \tanh \Delta |y|_{t\bar{t}}$
 - sample composition estimated using a likelihood-ratio-based discriminant
 - biais checked with several MC models

$$A_c^y = (0.33 \pm 0.26 \text{ (stat)} \pm 0.33 \text{ (syst)})\%$$

better inclusive measurement
than the unfolded result

ATLAS tt charge asymmetry measurement

Measurements



- inclusive and differential (vs $m_{t\bar{t}}$, $pT_{t\bar{t}}$, and $|\beta_{t\bar{t}}|$: enhance new physics sensitivity)
- measurements corrected to parton level
- Procedure (lepton+jets channel)
 - reconstruction of the t and \overline{t} four-momenta (likelihood fit)
 - W+heavy flavor scale factors: in-situ calibration in the unfolding
 - correction for resolution/acceptance effects using full Bayesian unfolding

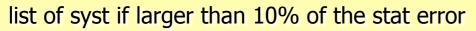
 $p\left(\boldsymbol{T}|\boldsymbol{D}\right) \propto \mathcal{L}\left(\boldsymbol{D}|\boldsymbol{T}\right) \cdot \boldsymbol{\pi}\left(\boldsymbol{T}\right)$

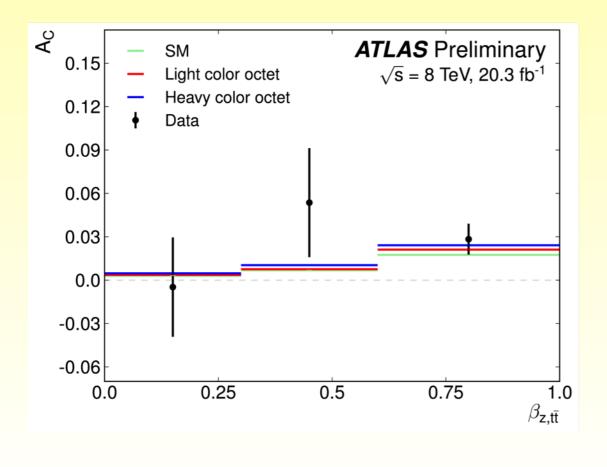
D: observed spectrum T: true spectrum п: prior

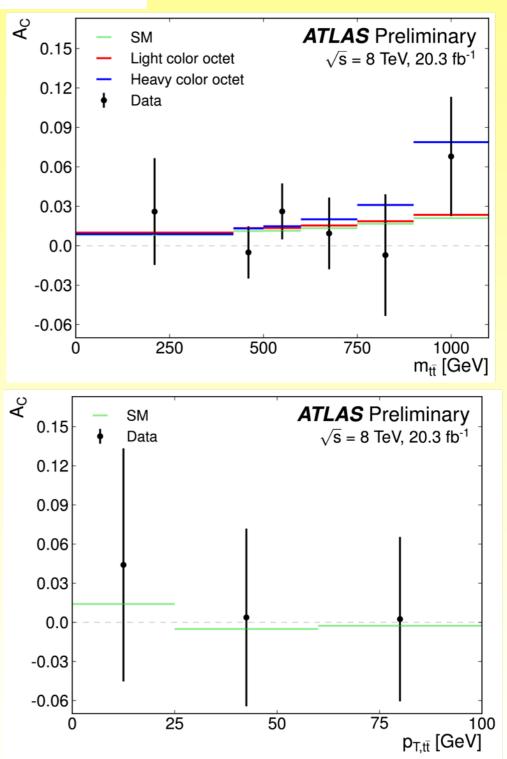
- systematics: marginalized through nuisance parameters in the likelihood
- fit in 6 channels (vs b-jet multiplicity and lepton charge)

ATLAS tt charge asymmetry measurement

	Source of systematic uncertainty	$\delta A_{\rm C}$
(a)	Jet energy scale and resolution Multijet background normalisation	0.0016 0.0005
(b)	Initial-/final-state radiation Monte Carlo statistics PDF	0.0009 0.0010 0.0007
	Statistical uncertainty	0.0044
	Total uncertainty	0.0049

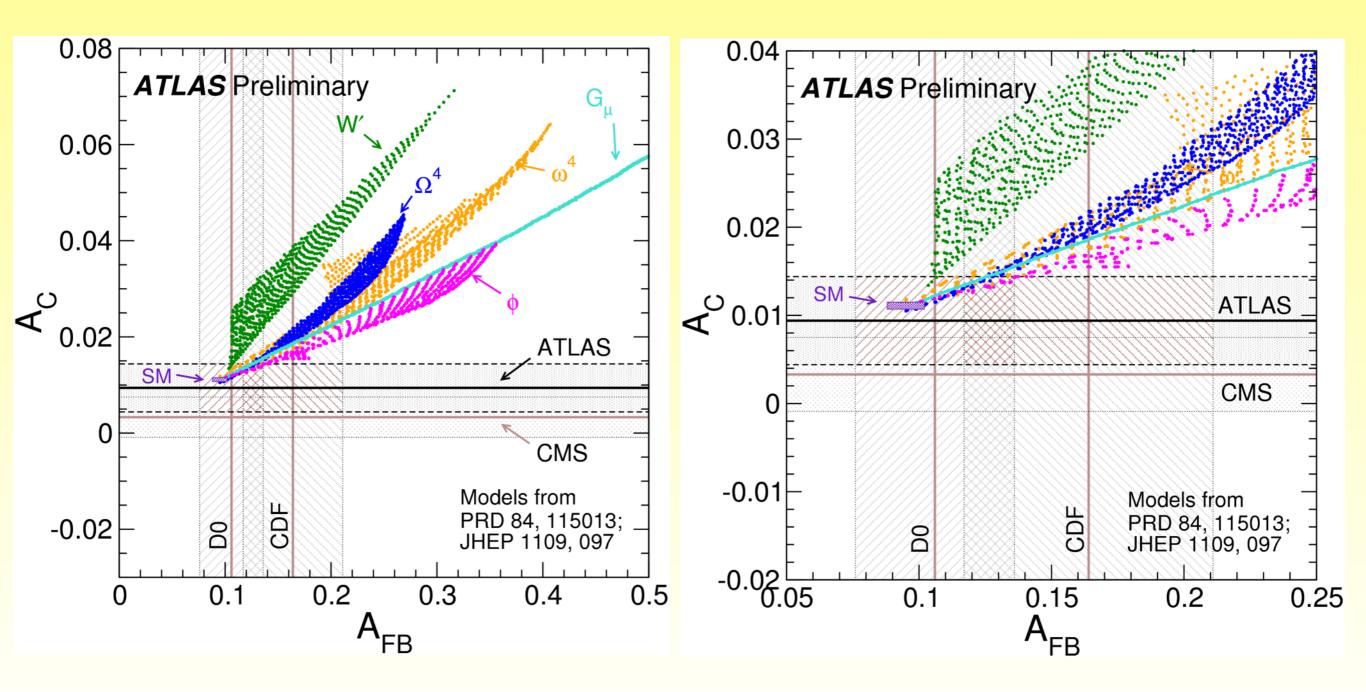

inclusive measurement:


 $A_{\rm C} = 0.009 \pm 0.005 \text{ (stat.+syst.)}$


 0009
 in agreement with the

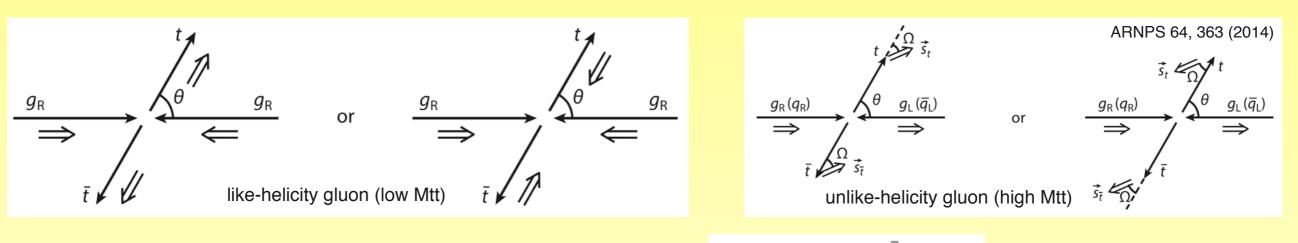
 0010
 SM (~ 1.1%)

 0007
 0044



F. Déliot, LHCP 2015, 2-SEP-15

Interpretation of the measurements



A wide range of parameters for the BSM models can be excluded

tt spin correlation

- Top quark lifetime is small:
 - decay before tt spin decorrelates
 - spin correlation propagates to top quark decay products

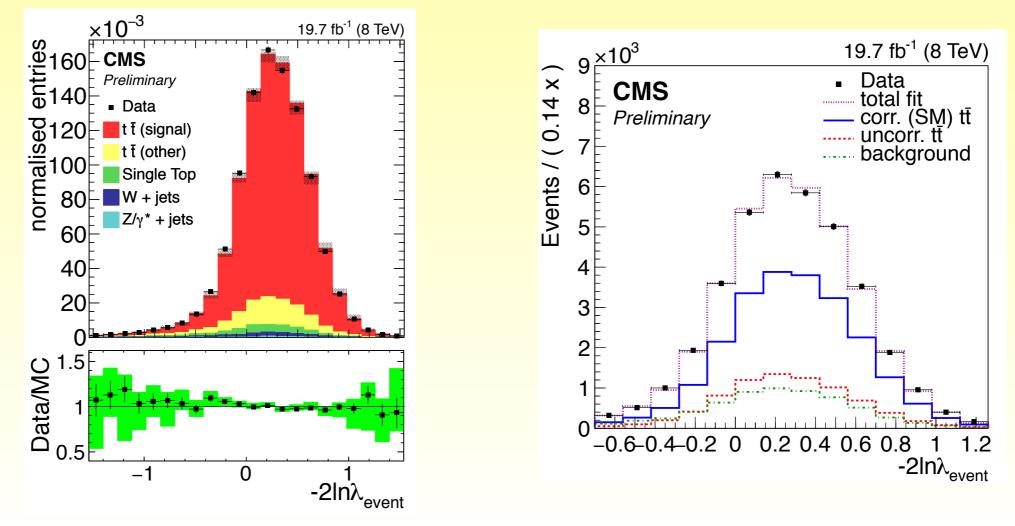
Fraction of $t\bar{t}$ events with spin correlation:

$$f = \frac{N_{SM}^{tt}}{N_{SM}^{t\bar{t}} + N_{Uncor}^{t\bar{t}}}$$

- CMS measurement using a matrix element method
 - pioneered at the Tevatron
 - mu+jets channel
 - per-event probability with either H_{cor} or H_{uncor}:

$$P(x_i|H) = \frac{1}{\sigma} \int f_{PDF}(q_1) f_{PDF}(q_2) dq_1 dq_2 \frac{(2\pi)^4 |M(y,H)|^2}{q_1 q_2 s} W(x,y) d\Phi_6$$

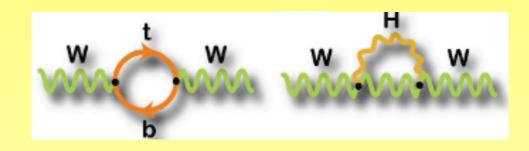
- fit of the event likelihood ratio:-2 ln λ_{event} to extract f $\lambda_{event} = \frac{P(H_{uncor})}{P(H_{uncor})}$

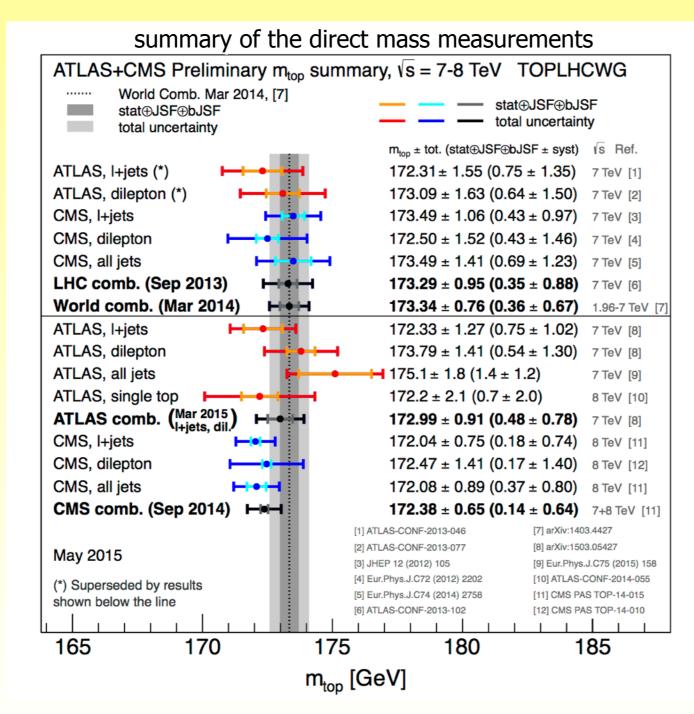

CMS tt spin correlation results

- Extraction of the event fraction with spin correlation
 - up to five jet events into the ME (kinematic fitter used to choose the 4 jets from $t\bar{t}$)
 - f and bkg fraction is fit with bkg, correlated and uncorrelated templates
 - calibration of the results

$$f_{calibrated} = 0.72 \pm 0.09 \,(\text{stat}) \,{}^{+0.15}_{-0.13} \,(\text{syst})$$

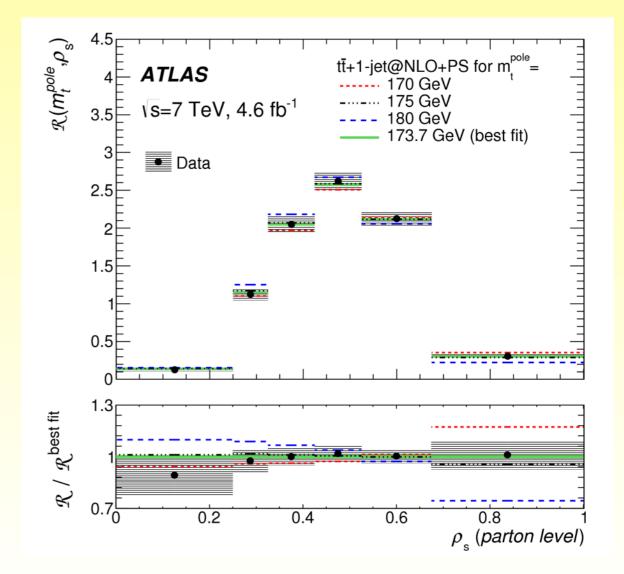
dominant systematic uncertainties: JES, scale variation, top mass


agree at 2.2 σ with the SM and 2.9 σ with uncorrelated hypothesis



Top quark mass

- Why measuring the top quark mass ?
 - free parameter of the SM
 - important parameter for vacuum stability
 - consistency of the SM (m_t, m_W, m_H)


uncertainty on direct measurements now below 1 GeV
uncertainty in interpreting the direct measurements into the top quark pole mass up to O(1 GeV)

ATLAS top quark pole mass using $t\bar{t}+1$ jets events

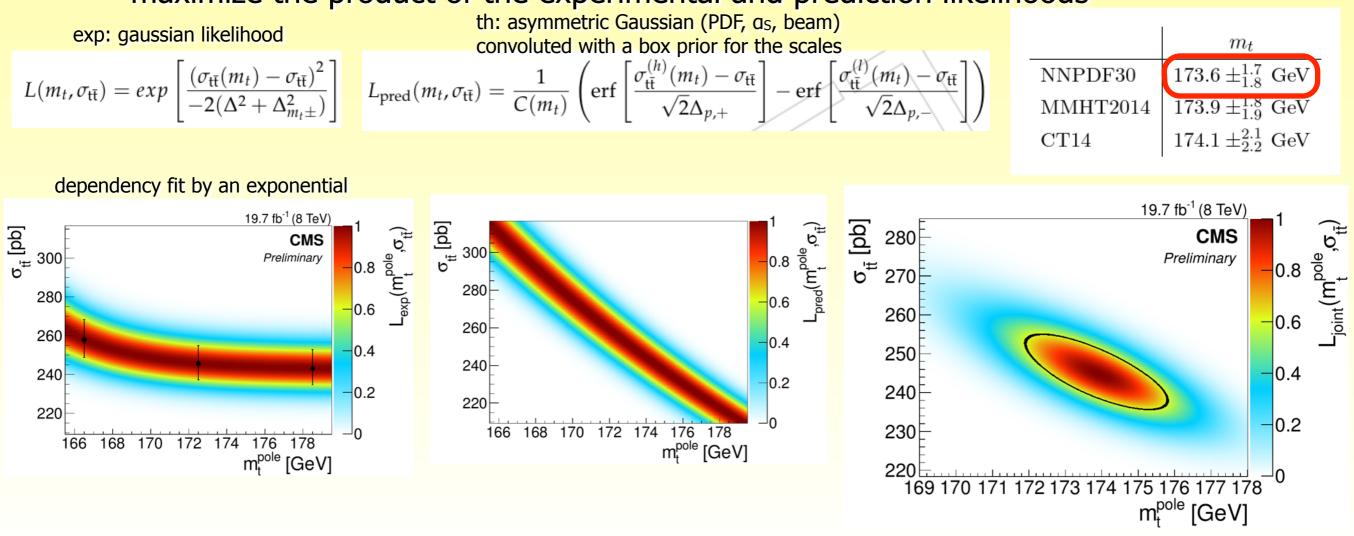
- New method to extract the top quark pole mass:
 - from the normalized differential $t\bar{t}+1$ jets cross section as a function of the inverse of the invariant mass of the $t\bar{t}+1$ jet system: ρ_s $2m_0$ $\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}+1-jet}}}$
 - lepton+jets channel (five jets events with 2 b-tagged jets)
 - differential cross section unfolded to the parton level (SVD) compared to NLO +parton shower predictions

 $m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theory) GeV}$

Description	Value	%
	[GeV]	
m_t^{pole}	173.71	
Statistical uncertainty	1.50	0.9
Scale variations	(+0.93, -0.44)	(+0.5, -0.3)
Proton PDF (theory) and α_s	0.21	0.1
Total theory systematic uncertainty	(+0.95, -0.49)	(+0.5, -0.3)
Jet energy scale (including <i>b</i> -jet energy scale)	0.94	0.5
Jet energy resolution	0.02	< 0.1
Jet reconstruction efficiency	0.05	< 0.1
b-tagging efficiency and mistag rate	0.17	0.1
Lepton uncertainties	0.07	< 0.1
Missing transverse momentum	0.02	0.1
MC statistics	0.13	< 0.1
Signal MC generator	0.28	0.2
Hadronization	0.33	0.2
ISR/FSR	0.72	0.4
Colour reconnection	0.14	< 0.1
Underlying event	0.25	0.1
Proton PDF (experimental)	0.54	0.3
Background	0.20	0.1
Total experimental systematic uncertainty	1.44	0.8
Total uncertainty	(+2.29, -2.14)	(+1.3, -1.2)

arXiv:1507.01769

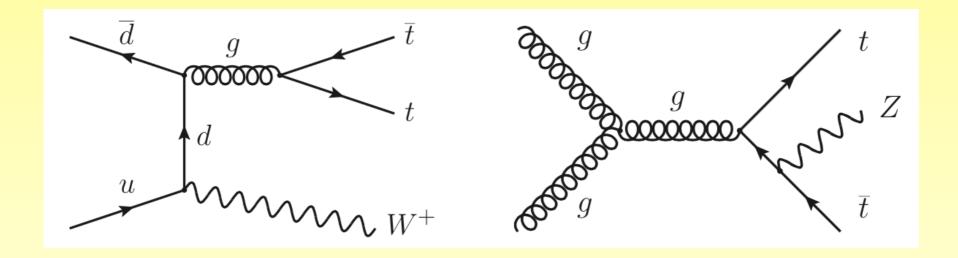
CMS top mass from the $t\bar{t}$ cross section


• Method:

- extract the top quark mass in a well defined renormalization scheme by comparing the measured tt cross section with the NNLO(+NNLL) theory computation
- precise measurement of the tt cross section (7+8 TeV) in the eµ channel using a template fit to the b jet multiplicity, the multiplicity and pt of other jets

 $\begin{array}{rcl} \sigma_{t\bar{t}} &=& 174.5 \pm 2.1 \, (\text{stat}) \pm \frac{4.5}{4.0} \, (\text{syst}) \pm 3.8 \, (\text{lumi}) \, \text{pb} & \text{at } \sqrt{s} = 7 \, \text{TeV} \, \text{and} \\ \sigma_{t\bar{t}} &=& 245.6 \pm 1.3 \, (\text{stat}) \pm \frac{6.6}{5.5} \, (\text{syst}) \pm 6.5 \, (\text{lumi}) \, \text{pb} & \text{at } \sqrt{s} = 8 \, \text{TeV}. \end{array}$

maximize the product of the experimental and prediction likelihoods


in agreement with the direct determinations, getting below the 2 GeV precision

Couplings with electroweak bosons

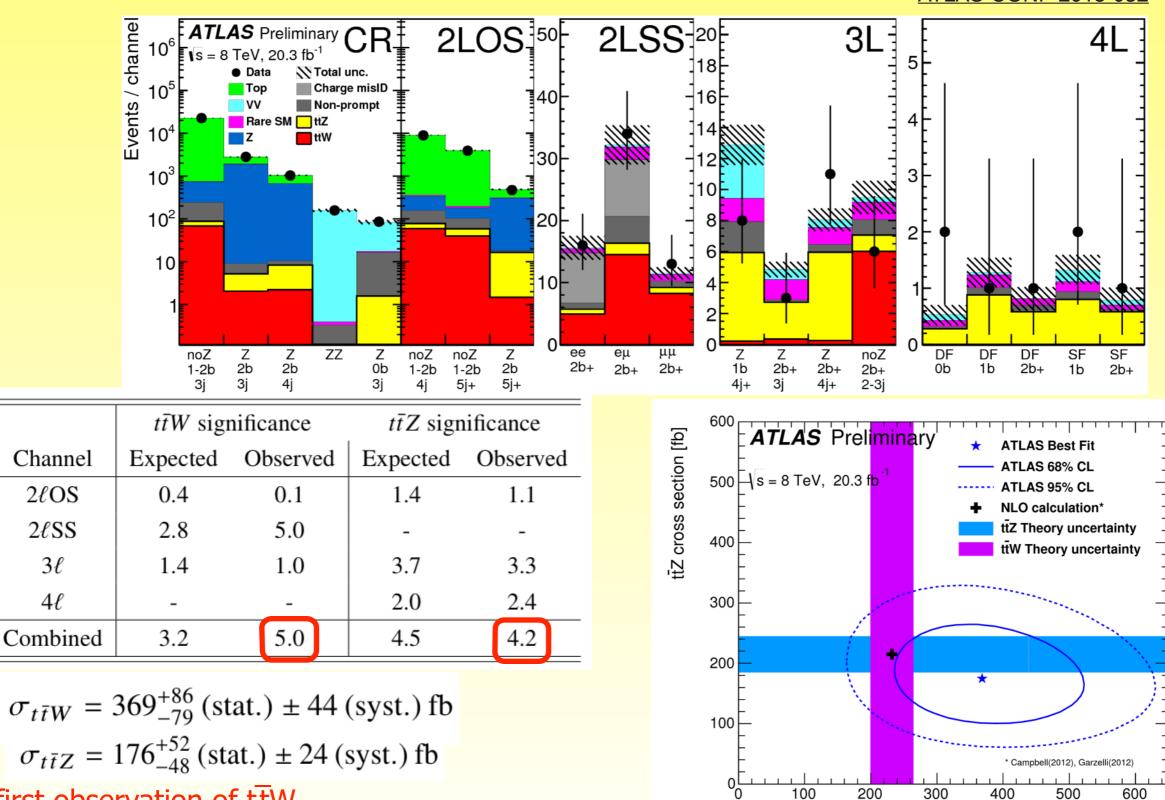
Top couplings with electroweak bosons

- The top quark might be connected to electroweak symmetry breaking
 - couplings to Z and photon were never measured so far
 - ttW and ttZ are the heaviest SM process that could be observed with Run 1 data (expected cross section around 200 fb)
 - extension of the Standard Model can modify them

• ttW and ttZ

- bins of lepton: 2, 3 or 4 leptons (2ℓ OS, 2ℓ SS, 3ℓ , 4ℓ)
- constrain on Z mass depending on the channels
- increase sensitivity by splitting in jet multiplicity/b-tagged jets
- backgrounds from data: "fake" leptons, charge misidentification
- background dominated regions to constrain it

ATLAS tTW et tTZ results


- Analysis strategy
 - cut and count except for the 2ℓ OS channel that uses a neural network
 - simultaneous likelihood fit of ttW and ttZ cross sections

Process	$t\bar{t}$ decay	Boson decay	Signature	has $Z \to \ell^+ \ell^-$
$t\bar{t}W^{\pm}$	$(\ell^{\mp} v b)(q \bar{q} b)$	$\ell^{\pm} \nu$	OS dilepton	no
	$(\ell^{\pm} \nu b)(q \bar{q} b)$	$\ell^{\pm} \nu$	SS dilepton	n/a
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^{\pm} \nu$	Trilepton	no
$t\bar{t}Z$	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	qar q	OS dilepton	no
	$(q\bar{q}b)(q\bar{q}b)$	$\ell^+\ell^-$	OS dilepton	yes
	$(\ell^{\pm}\nu b)(q\bar{q}b)$	$\ell^+\ell^-$	Trilepton	yes
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^+\ell^-$	Tetralepton	yes

- Uncertainties
 - statistical dominates
 - systematic treated as nuisance parameters

Uncertainty	$\sigma_{t\bar{t}W}$	$\sigma_{t\bar{t}Z}$
Luminosity	3.2%	4.6%
Reconstructed objects	3.7%	7.4%
Background from simulation	5.8%	8.0%
Fake leptons and charge misID	7.5%	3.0%
Signal modelling	1.8%	4.5%
Total systematics	12%	13%
Statistical	+24% / -21%	+30% / -27%
Total	+27% / -24%	+33% / -29%

ATLAS tTW and tTZ results

first observation of $t\overline{t}W$ cross section consistent with the SM

Channel

 $2\ell OS$

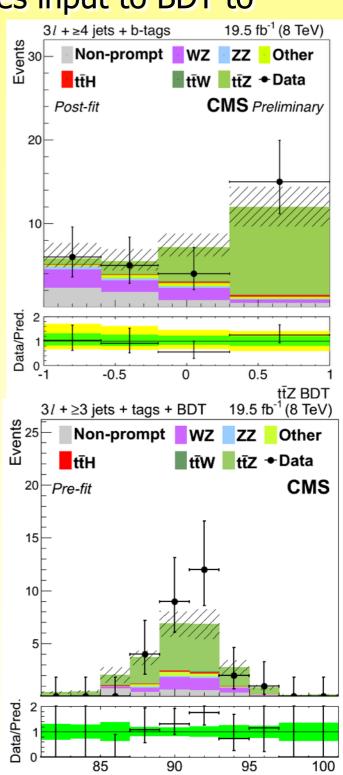
2ℓSS

 3ℓ

 4ℓ

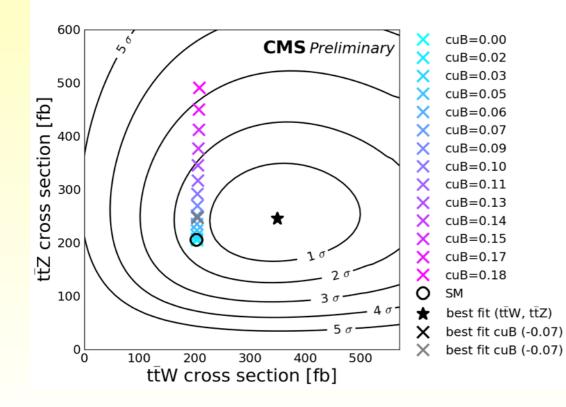
ttW cross section [fb]

ATLAS-CONF-2015-032

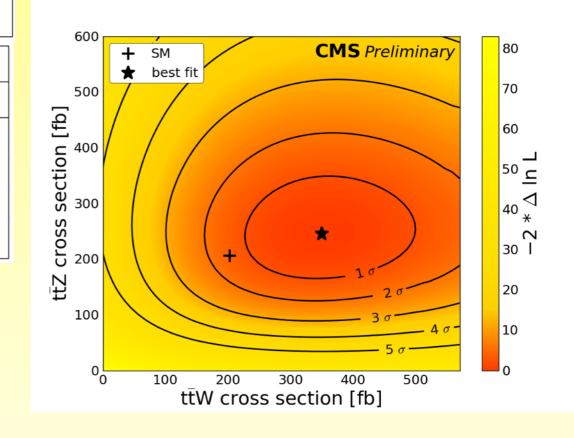

CMS tTW and tTZ results

- Analysis strategy
 - full event reconstruction (likelihood ratio to match jets with lepton from the top)
 - matching reconstruction quality and kinematic quantities input to BDT to distinguish signal from background
 31+>4 jets + b-tags
 19.5
 Non-promet
- Uncertainties
 - statistical dominates
 - systematic treated as nuisance parameters

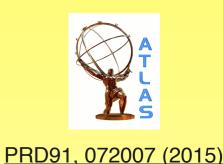
Reduction in signal strength uncertainty						
Systematic uncertainties removed	tŧW	tīZ				
Signal modeling	5.2%	7.1%				
Nonprompt backgrounds	12.5%	0.5%				
Inclusive prompt backgrounds	0.7%	2.6%				
Prompt backgrounds with extra jets	0.2%	3.4%				
Prompt backgrounds with extra heavy flavor jets	0.0%	1.1%				
b tagging efficiency	6.1%	7.3%				
Jet energy scale	1.4%	< 0.1%				
Lepton ID and trigger efficiency	0.3%	0.5%				
Luminosity and pileup	0.7%	0.5%				
Bin-by-bin statistical uncertainty	4.4%	1.2%				
All systematic uncertainties	31%	29%				



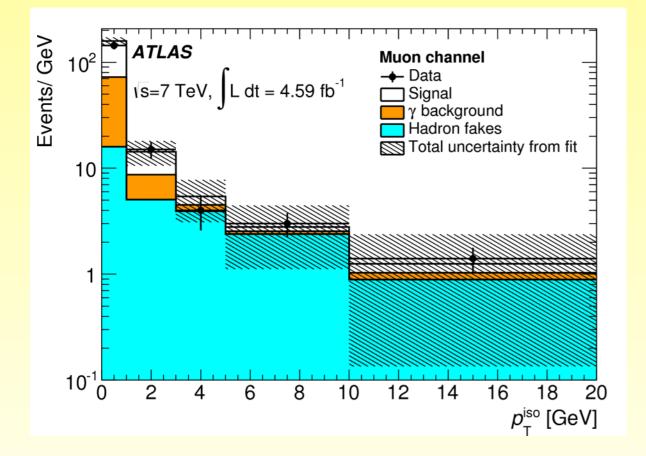
Z candidate mass


CMS $t\overline{t}W$ and $t\overline{t}Z$ results

tŦW			Cross section (fb)		Signal strength (μ)		Signif	fica	nce	
Channe	els	E	Expected	Observed	Expected	Observed	Expected	0	bserve	ed
SS			203^{+88}_{-73}	414_{-112}^{+135}	$1.0\substack{+0.45 \\ -0.36}$	$2.04\substack{+0.74 \\ -0.61}$	3.4		4.9	
3ℓ			203^{+215}_{-194}	210^{+225}_{-203}	$1.0^{+1.09}_{-0.96}$	$1.03\substack{+1.07 \\ -0.99}$	1.0		1.0	
SS + 3,	l		203^{+84}_{-71}	382^{+117}_{-102}	$1.0\substack{+0.43\\-0.35}$	$1.88\substack{+0.66\\-0.56}$	3.5		4.8	
ttZ			Cross s	ection (fb) Signal strength (μ) Signific		Signal strength (μ)		ficai	nce	
Chann	nels		Expected	Observed	Expected	Observed	Expected	O	bserve	ed
OS			206^{+142}_{-118}	257^{+158}_{-129}	$1.0^{+0.72}_{-0.57}$	$1.25^{+0.76}_{-0.62}$	1.8		2.1	
3ℓ			206^{+79}_{-63}	257^{+85}_{-67}	$1.0^{+0.42}_{-0.32}$	$1.25^{+0.45}_{-0.36}$	4.6		5.1	
4ℓ			$206\substack{+153 \\ -109}$	228^{+150}_{-107}	$1.0\substack{+0.77\\-0.53}$	$1.11\substack{+0.76\\-0.52}$	2.7		3.4	
$OS + 3\ell$	+ 4	l	206^{+62}_{-52}	242^{+65}_{-55}	$1.0\substack{+0.34 \\ -0.27}$	$1.18\substack{+0.35\\-0.29}$	5.7		6.4	



first observation of ttZ cross section consistent with the SM



- New physics interpretation
 - effective field theory approach
 - 5 selected dim-6 operators

ATLAS $t\overline{t} \gamma$ result

- Analysis strategy
 - lepton+jets channel with at least 1 b-tagged jet, $E_T(\gamma) > 20$ GeV
 - profile likelihood fit to the photon track-isolation distribution
 - background template from multijet events with inverted photon shower shape
 - measurement within the fiducial phase space

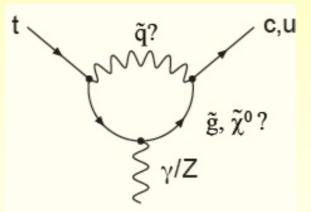
Uncertainty source	Uncertainty [%]
Background template shapes	3.7
Signal template shapes	6.6
Signal modeling	8.4
Photon modeling	8.8
Lepton modeling	2.5
Jet modeling	16.6
b-tagging	8.2
$E_{\rm T}^{\rm miss}$ modeling	0.9
Luminosity	1.8
Background contributions	7.7

140 (e) and 222 (µ) events observed 52±14 and 100±28 determined to be $t\bar{t}\gamma$

 $\sigma_{t\bar{t}\gamma}^{\text{fid}} \times \text{BR} = 63 \pm 8(\text{stat.}) {}^{+17}_{-13}(\text{syst.}) \pm 1 (\text{lumi.}) \text{ fb}$

first observation of tτγ (5.3σ) SM: 48±10 fb

F. Déliot, LHCP 2015, 2-SEP-15


Flavor changing neutral currents

Flavor changing neutral current in top decays

- FCNC
 - in the Standard Model, FCNC forbidden at tree level due to the GIM mechanism
 - allowed at one-loop level but orders of magnitude suppressed: < 10⁻¹²
 - numerous Standard Model extensions predict higher branching ratio (quark singlet, 2HDM, MSSM, ...): enhancement up to 10⁻⁴ - 10⁻⁵
- any measurable branching ratio for top FCNC decays would be an indication of new physics

Process	\mathbf{SM}	2 HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \rightarrow Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	—
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	—
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \rightarrow hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	—
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Snowmass, arXiv:1311.2028

ATLAS search for $t \rightarrow qZ$

Analysis strategy

Sample

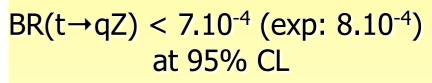
Fake leptons

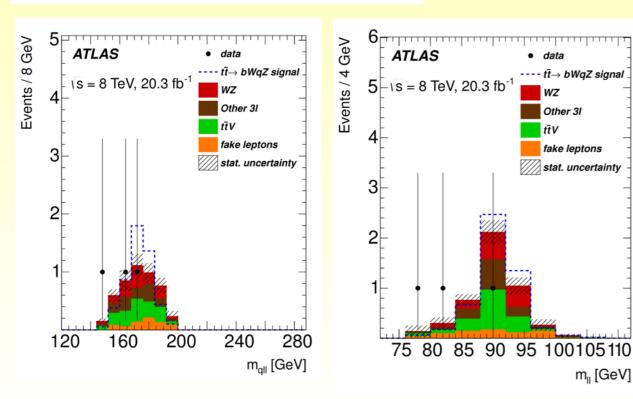
Other backgrounds

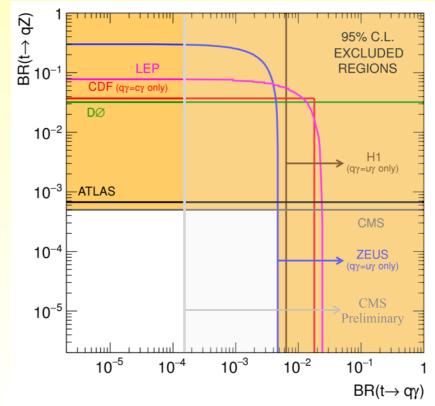
Signal efficiency $[\times 10^{-4}]$

Total background

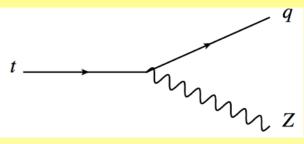
WZ

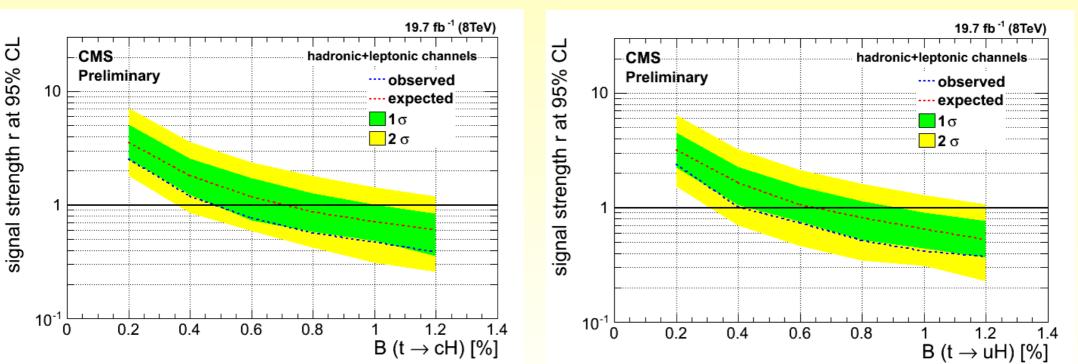

 $t\bar{t}V$


tΖ

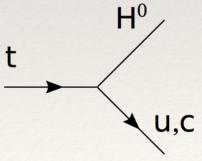

Data


- final state with 3 leptons: $t\overline{t} \rightarrow u/cZ(\rightarrow \ell \ell) W(\rightarrow \ell v)b$
- dim-6 effective couplings implemented in simulation
- best combination to reconstruct the top kinematics determined with a χ^2
- WZ, ttZ and fake control region


Yields			
	Source	Background [%]	Signal [%]
$1.3 \pm 0.2 \pm 0.6$	Background modelling	17	
$1.5 \pm 0.1 \pm 0.5$	Signal modelling	_	5.5
$1.0 \pm 0.1 \pm 0.5$	Leptons	4.7	2.9
$0.7 \pm 0.3 \pm 0.4$	Jets	7.7	4.9
$0.2 \pm 0.1 \pm 0.1$	<i>b</i> -tagging	3.9	7.2
$4.7 \pm 0.4 \pm 1.0$	$E_{ m T}^{ m miss}$	3.2	1.5
3	Luminosity	2.4	2.8
$7.8 \pm 0.1 \pm 0.8$	Statistical	8.1	1.5
$7.0 \pm 0.1 \pm 0.0$			

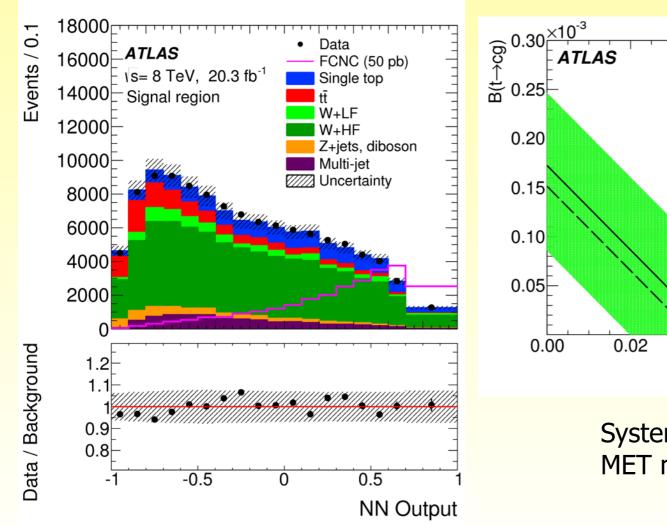


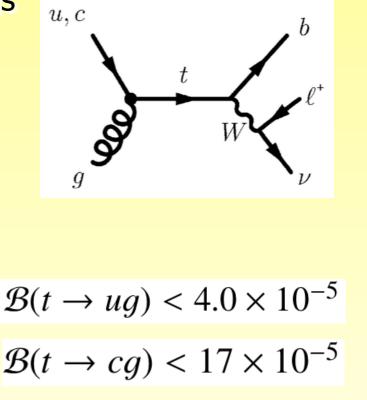
F. Déliot, LHCP 2015, 2-SEP-15


CMS search for $t \rightarrow c/uH$

- Analysis strategy
 - hadronic and leptonic final states: $t\bar{t} \rightarrow u/cH(\rightarrow \gamma \gamma) W(\rightarrow \ell/h)b$
 - jet/photon/lepton pairing to get close top and antitop masses
 - background:
 - * shape of resonant γγ background from MC
 - * shape/normalization of non resonant yy background fitted from data

100 < M _{YY} < 180 GeV	Hadronic channel	Leptonic channel
Data	29	8
Resonant diphoton background	0.152 ± 0.021 (stat.)	0.038 ± 0.008 (stat.)
Non-resonant diphoton background	28.9 ± 5.4 (stat.)	8.0 ± 2.8 (stat.)
expected signal yields for \mathcal{B} (t \rightarrow cH) = 1%	6.26 ± 0.07 (stat.)	1.91 ± 0.04 (stat.)
expected signal yields for \mathcal{B} (t \rightarrow uH) = 1%	7.09 ± 0.08 (stat.)	2.02 ± 0.04 (stat.)


 $BR(t \rightarrow cH) < 0.47 (exp: 0.71)$


 $BR(t \rightarrow uH) < 0.42$ (exp: 0.65)

at 95% CL

ATLAS search for t \rightarrow u/cg

- $t \rightarrow qg$ in $t\overline{t}$ is overwhelmed with multijet background
 - sensitivity via single top production
- Analysis strategy
 - lepton+jets channel
 - strong top FCNC implemented through dim-6 effective couplings
 - a Neural Network is used to separate signal from background with 13 input variables

20000000000 8

at 95% CL

Systematic uncertainties dominated by jet energy resolution, MET modeling and multijet background modeling

×10⁻³

0.08

B(t→ug)

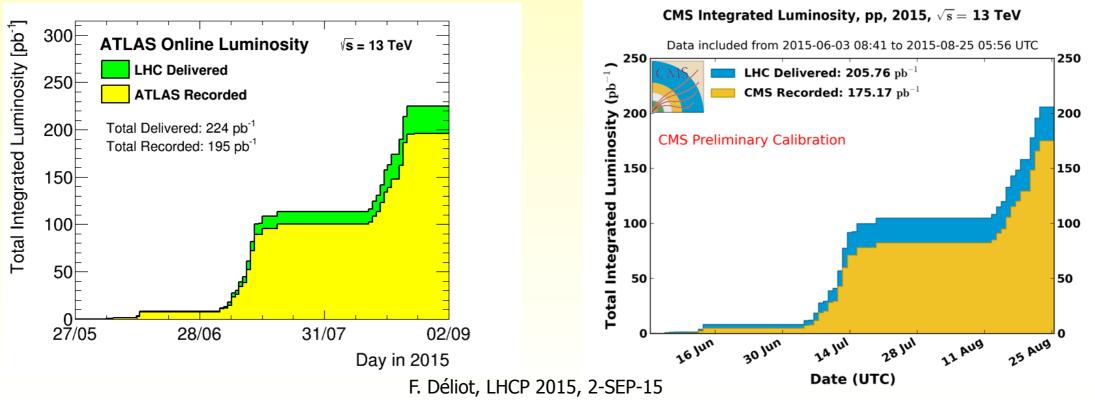
s= 8 TeV, 20.3 fb

Observed

Expected

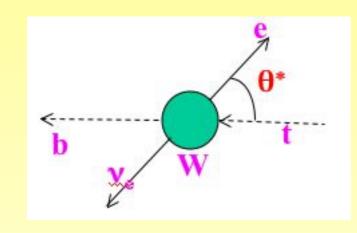
0.06

 $\pm 1\sigma$

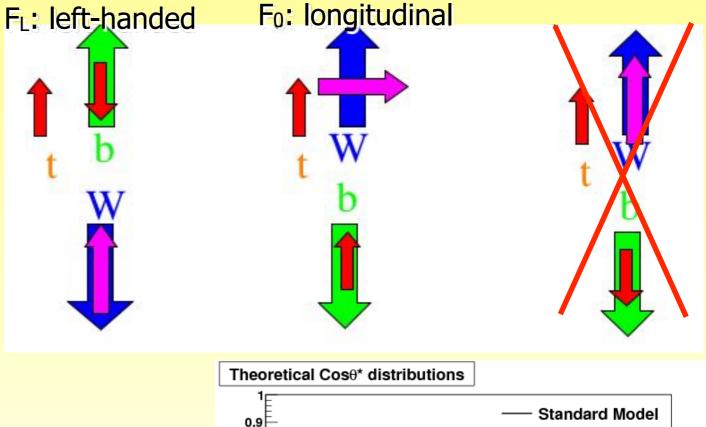

Excluded region

0.04

Conclusion


- The top quark is an unique tool to search for new physics
 - the top quark properties have been precisely scrutinized with Run 1 LHC data
 - several processes were observed for the first time $(t\bar{t}+Z/W/\gamma)$
 - single top production starts to be utilized for top quark property measurements so far it seems to behave as expected by the Standard Model
- See all details in the parallel session talks
 - mass: Nathan Mirnan, Teresa Barillari
 - single top: Benedikt Maier, Reinhard Schwienhorst
 - tt: Cecilia Gerber, Boris Lemmer
- With LHC Run 2 at 13 TeV, we will enter another new area for top physics
 - higher energy (e.g. tt+Z/W/γ/H)
 - higher precision (i.e higher mass scales for new physics)
 - higher statistics (differential property measurements)

backup


W-boson helicity

- Study of the Wtb vertex
 - through W boson polarization in top decays
 - right-handed W not predicted in the b-quark massless limit
 - W helicity fraction measured using angular distributions of the charged lepton from the top decays

angle between the charged lepton in the W rest frame and the momentum of the W in the top rest frame

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{\rm L} + \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{\rm R} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{\rm O}$$

0.8

0.6

0.4

0.3

0.2

0.1

0<u>1</u>

-0.8

-0.6

-0.4

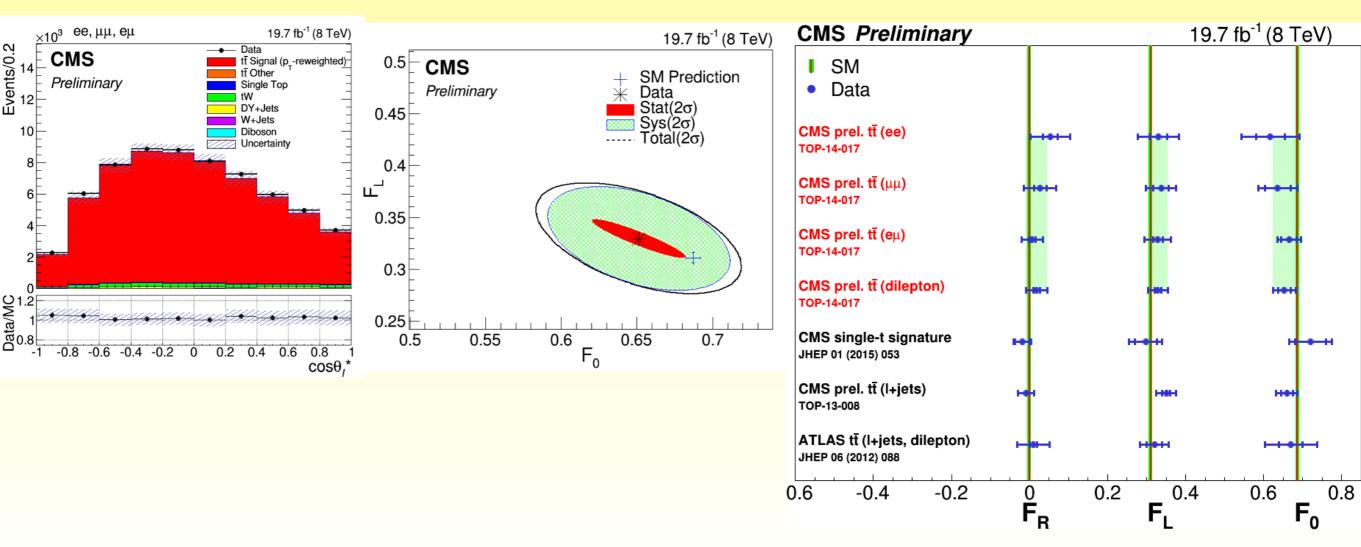
-0.2

<mark>{ک</mark>ار کوری کوری Longitudinal

Left-handed Right-handed

0.2

0 cosθ* 0.4

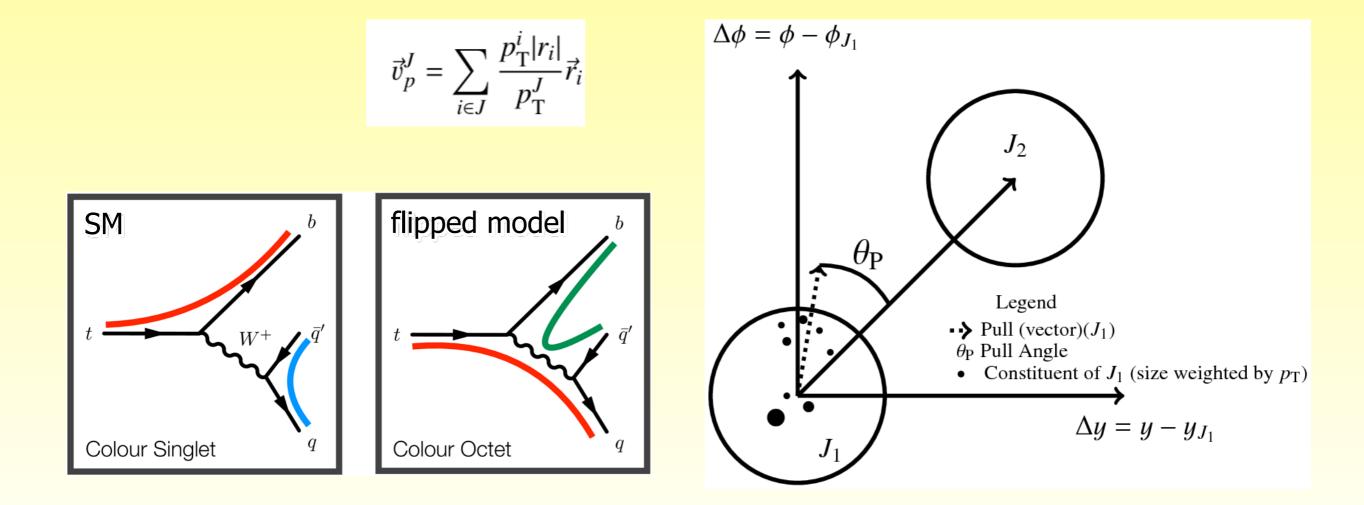

0.6

0.8

CMS W-boson helicity results

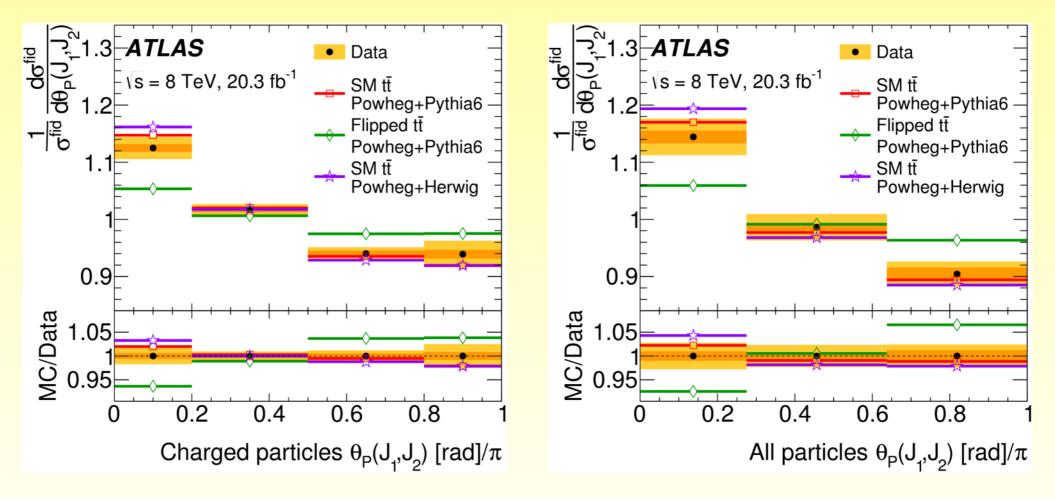
- CMS measurement using dilepton events with 2 b-tagged jets
 - need to reconstruct the tt kinematics (analytical matrix weighting technique)
 - fit the reweighted simulated distributions to the observed $\cos\theta^*$ data distribution
 - F₀, F_L and detector inefficiencies/acceptance extracted from the fit

 $F_0 = 0.653 \pm 0.016(\text{stat}) \pm 0.024(\text{syst})$ $F_L = 0.329 \pm 0.009(\text{stat}) \pm 0.025(\text{syst})$


in agreement with the SM predictions

dominant systematic uncertainty: scale variations

Color flow in tt events


- tt final state: unique tool to study color connections in QCD
 - data compared to simulation with a W that is color-charged or color-neutral
 - observable: jet pull angle, i.e. angle between pull vector and vector connecting two jets
 - jet pull angle: expected to be ~ 0 if the 2 jets are color-connected

ATLAS color flow measurements

- Measurement procedure (lepton+jets channel)
 - background subtraction
 - corrections for detector resolution and acceptance effects: unfolding to particle level (iterative bayesian technique)
 - jet pull angle using charged particles (tracking based) or all particles (calorimeter based)

agree with the SM color flow at 1.1 σ , differ from flipped model at 3.3 σ

dominant systematic uncertainties: $t\overline{t}$ modeling

see also CMS note: CMS-PAS-JME-14-002

F. Déliot, LHCP 2015, 2-SEP-15

