



## Vector Boson Scattering at LHC

Linda Finco INFN and University of Torino

On behalf of the CMS and Atlas Collaborations

The Third Annual Large Hadron Collider Physics Conference

### **Outline and References**

- Theoretic Introduction and Motivations
- Current State at LHC (Run I)
  - $\gamma\gamma$ -Production of  $W^+W^-$

CMS: JHEP 1307 (2013) 116

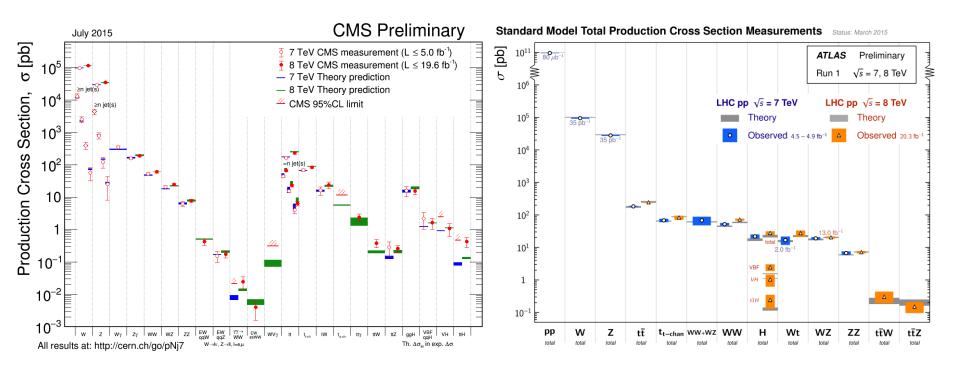
• Z + F/B jets

CMS: Eur. Phys. J. C 75 (2015) 66, JHEP 10 (2013) 101 Atlas: JHEP 04 (2014) 031

W + F/B jets

CMS: CMS-PAS-SMP-13-012

•  $W^{\pm}W^{\pm}$  + 2 jets

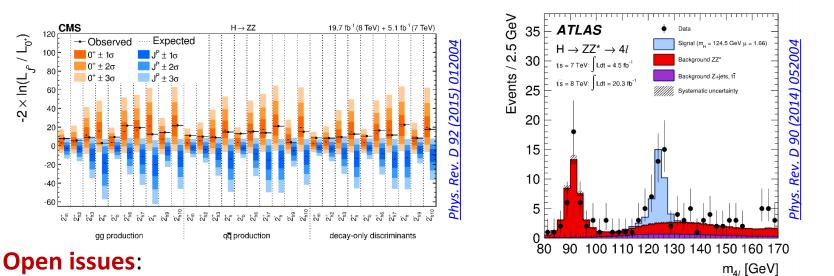

CMS: Phys. Rev. Lett. 114 (2015) 05180 Atlas: Phys. Rev. Lett. 113 (2014) 141803

Future Projections (Run III, HL-LHC)

CMS: CMS-PAS-FTR-13-006 Atlas: ATL-PHYS-PUB-2013-006

# General Remarks

### Precise SM Measurements




#### Good understanding of the detectors + accurate theory predictions

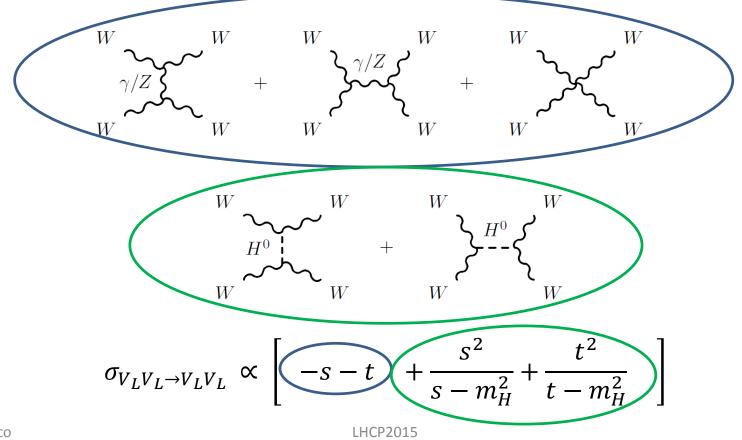
**Precise measurements** of the Standard Model processes over many orders of magnitude

### Still, a lot to be done...

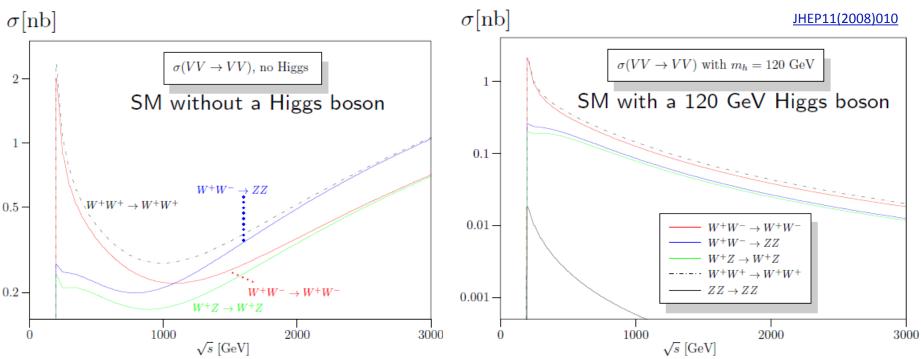
In July 2012 a new particle was discovered: the Higgs boson



understand the **nature of this Higgs boson** and if there is **new physics beyond the SM** 


### How?

- keep searching for new particles (more Higgs bosons, sparticles, something new...)
- measure with high precision its properties to the %level
- measure the Higgs other important role: unitarization of the VV scattering


### The Role of the SM Higgs Boson

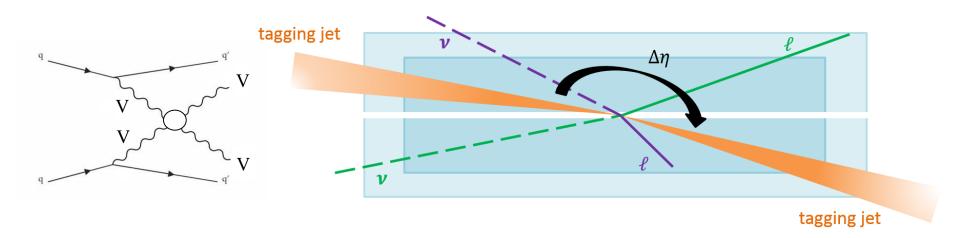
The Higgs mechanism explains how the elementary particles get mass The W and Z acquire the longitudinal degree of freedom  $(W_L, Z_L)$ 

Without the Higgs,  $V_L V_L \rightarrow V_L V_L$  would break unitarity (for  $\sqrt{s} > 1.2$  TeV)



### The Vector Boson Scattering



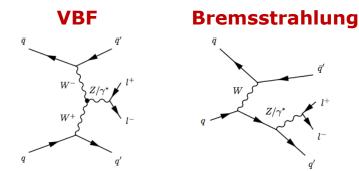

High energy vector boson scattering plays a **central role**:

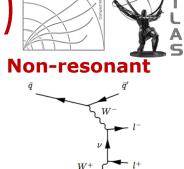
- test of the nature of the Higgs boson
- main experimental grounds to the understanding of which alternative theory is at work.



If the discovered Higgs boson is only partially responsible for EWSB, then  $V_L V_L$  cross section will keep growing with s, up to the new physics scale  $\Lambda$ 

## **VBS Signal Topology**





### Main features:

- Energetic jets in the forward and backward directions
- Large rapidity separation  $\Delta y_{ii}$  ( $\Delta \eta_{ii}$ )
- Large invariant mass of the two tagging jets m<sub>jj</sub>
- *VV* decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless
  W/Z exchange (no extra jets between tagging jets)

# Current State

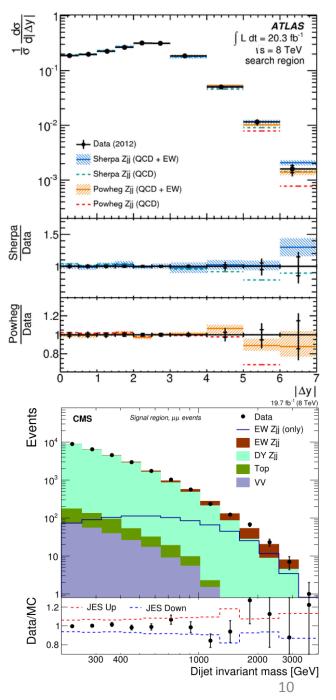


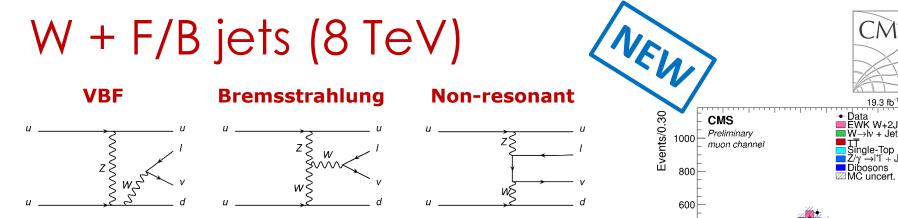




CMS

#### IMPORTANT BENCHMARK


- Comparable σ and topology to VBF production of Higgs
- Sensitivity to new physics in WWZ coupling
- Use it to refine forward jet selection


#### SIGNAL:

- Single *Z* **boson** decaying into 2 leptons ( $Z \rightarrow ee, \mu\mu$ )
- Two high energy jets, with large  $\Delta \eta_{jj}$  and  $m_{jj}$

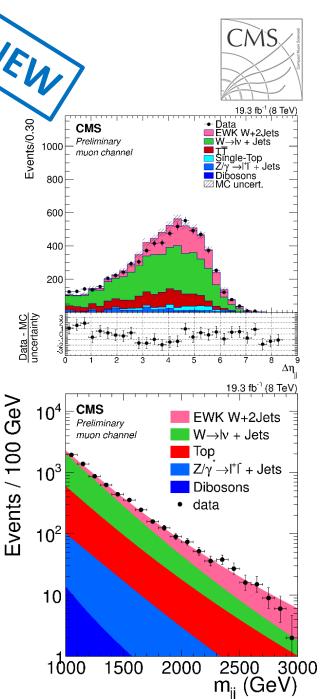
**CMS**:  $\sigma$  = 226 ± 26 (stat) ± 35 (syst) fb ( $\sigma_{exp}$ = 239 fb)

Atlas: 
$$\sigma$$
 = 54.7 ± 4.6 (stat)  $^{+9.8}_{-10.4}$  (syst) ± 1.3 (lumi) fb ( $\sigma_{exp}$ = 46.1 fb)



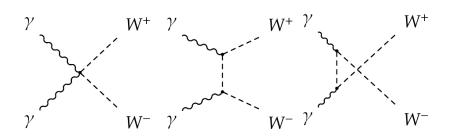


#### **IMPORTANT BENCHMARK**


- Comparable σ and topology to VBF production of Higgs
- Test of the SM predictions
- Use it to refine forward jet selection

### SIGNAL:

- Single isolated lepton from **W** boson decay ( $W \rightarrow e\nu, \mu\nu$ )
- Significant **missing**  $E_T$  due to the neutrino
- Two high energy jets, with large  $\Delta \eta_{jj}$  and  $m_{jj}$

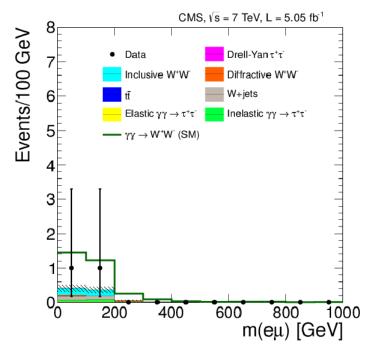

With 
$$p_T^{jet1}$$
 > 60 GeV  $p_T^{jet2}$  > 50 GeV  $|\eta^{jet}|$  < 4.7  $m_{jj}$  > 1 TeV

 $\sigma_{fid}$  = 0.42 ± 0.04 (stat) ± 0.09 (syst) ± 0.01 (lumi) pb ( $\sigma_{exp}$ = 0.50 ± 0.02 (scale) ± 0.02 (PDF) pb)

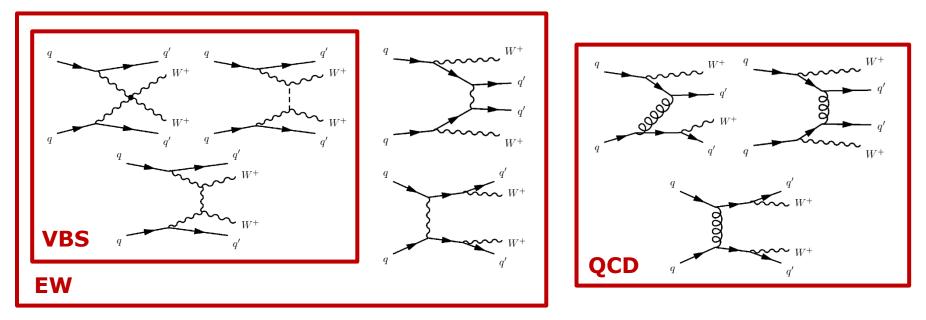


## $\gamma\gamma$ -Production of W<sup>+</sup>W<sup>-</sup> (7 TeV)






#### **IMPORTANT BENCHMARK**


- Sensitivity to SM deviations
- First  $VV \rightarrow VV$  analysis at LHC

SIGNAL:  $pp \to p^{(*)}\gamma\gamma p^{(*)} \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}e^{\mp}\mu^{\pm}p^{(*)}$ 

- 2 high  $p_T$  isolated leptons, with opposite charge and different flavour  $\mu e$
- 0 extra tracks from primary vertex
- $p_T(e^{\mp}\mu^{\pm}) > 30$  GeV and  $m(e^{\mp}\mu^{\pm}) > 30$  GeV
- 2 events observed passing all criteria:
  2.2 ± 0.4 signal and 0.84 ± 0.15 background expected
- Measured cross section:  $\sigma = 2.2 \stackrel{+3.3}{-2.0}$  (stat) fb (predicted  $\sigma = 4.0 \pm 0.7$  fb) Upper Limit  $\sigma < 10.6$  fb at 95% C.L.

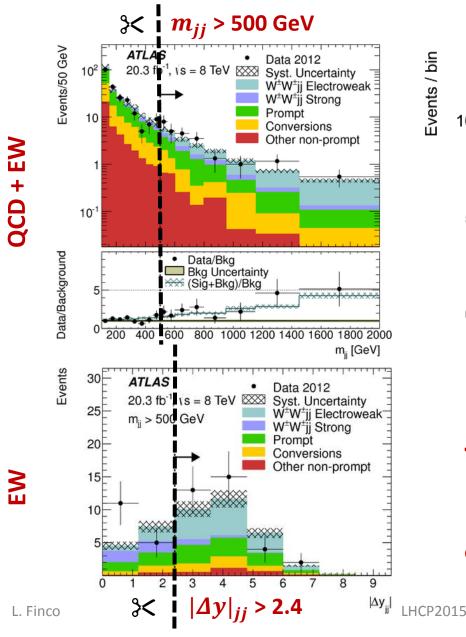


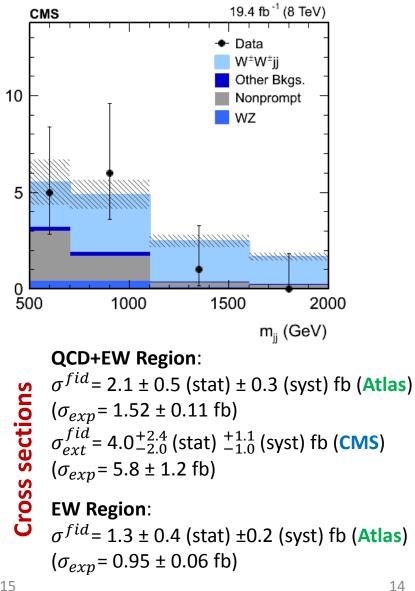
## VBS in W<sup>±</sup>W<sup>±</sup> + 2 jets Channel (8 TeV)



#### **TWO DIFFERENT SEARCH REGIONS:**

Inclusive Analysis – QCD + EW PRODUCTION (Atlas and CMS):


- 2 same-sign leptons with  $p_T$  > 25(20) GeV,  $|\eta|$  < 2.5,  $m_{\ell\ell}$  > 20(50) GeV
- Missing energy from W decay ( $E_T > 40$  GeV)
- 2 jets with  $p_T(E_T)$  > 30 GeV and  $m_{jj}$  > 500 GeV


### VBS Analysis – EW PRODUCTION (Atlas)

•  $\left|\Delta y_{jj}\right| > 2.4$ 

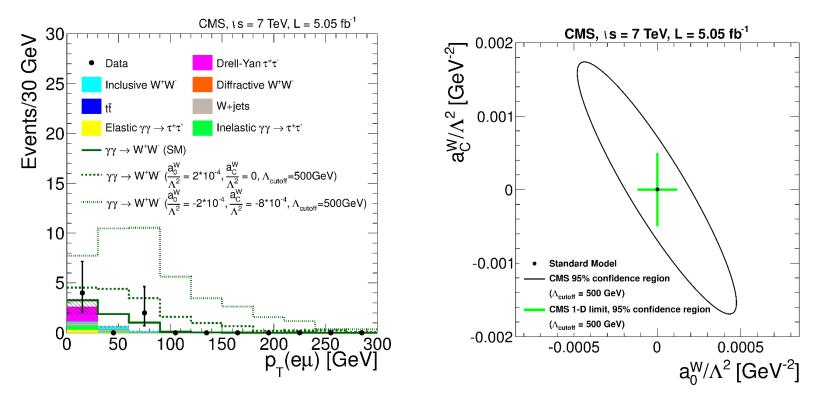


### VBS in W<sup>±</sup>W<sup>±</sup> + 2 jets Channel (8 TeV)





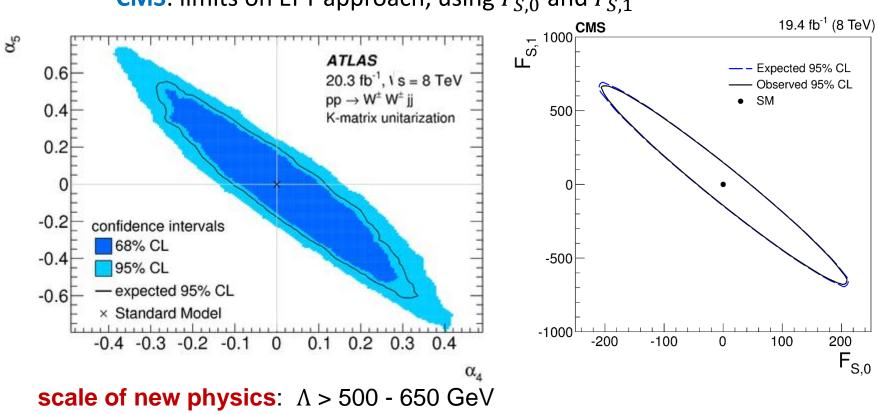
## Anomalous Quartic Gauge Coupling


- SM may considered as a low-energy effective theory of a more complete but unknown theory
- **Extension** of the **SM Lagrangian** by introducing higher-dimension operators:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{\dim d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- A is the energy scale of new physics and it is large compared with the experimentally accessible energy
- Operator coefficients are proportional to inverse powers of mass ( $\Lambda$ )
- **Dimension 6** operators ( $\sim \frac{1}{\Lambda^2}$ ) may affect **3 boson vertices** too
- **Dimension 8** operators ( $\sim \frac{1}{\Lambda^4}$ ) modify **4 boson vertices** only
- Effective field theory is useful as a methodology for studying possible new physics effects from massive particles not directly detectable
- New physics in EW sector modifies gauge boson self-interactions
  - VBS could still be strong and differ from SM predictions
    - Anomalous enhancement of the cross section at high energy

### $\gamma\gamma$ -Production of W<sup>+</sup>W<sup>-</sup> (7 TeV)


- Channel sensitive to *yyWW* vertex
- For aQGC study, limit the search region to  $p_T(e^{\mp}\mu^{\pm}) > 100 \text{ GeV}$ 
  - Cross section limit w.r.t. SM prediction < 1.9 fb at 95% C.L.
  - No deviation from SM TGC assumed





### VBS in W<sup>±</sup>W<sup>±</sup> + 2 jets Channel (8 TeV)

- Channel sensitive to WWWW vertex
- aQGC modelling:
  - Atlas: limits on EW chiral approach, using  $\alpha_4$  and  $\alpha_5$
  - CMS: limits on EFT approach, using  $F_{S,0}$  and  $F_{S,1}$



LHCP2015



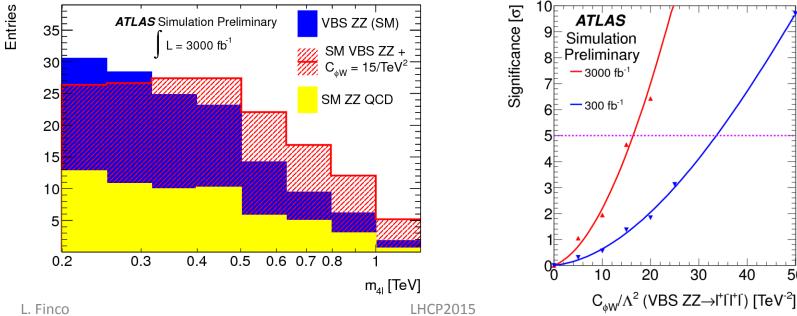
# Future Perspectives

### VBS Studies at High Luminosity

- Several final states investigated by both Collaborations at 14 TeV
  - $pp \rightarrow ZZqq \rightarrow 4\ell jj$  (VBS)
  - $pp \rightarrow WZqq \rightarrow 3\ell \nu jj$  (VBS)
  - $pp \rightarrow W^{\pm}W^{\pm}qq \rightarrow \ell^{\pm}\ell^{\pm}\nu\nu jj$  (VBS)
  - $pp \rightarrow Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$  (QGC)
- Two different scenarios
  - $\mathcal{L} = 300 \text{ fb}^{-1}$  (at the end of Run III)
  - $\mathcal{L} = 3000 \text{ fb}^{-1} (\text{HL-LHC})$
- Results interpreted in terms of **Effective Lagrangian**, to estimate the sensitivity to new physics

### VBS in ZZ + 2 jets Channel (14 TeV)

#### Standard VBS selection:


- 4 leptons with  $p_T$  > 25 GeV
- 2 jets with  $p_T$  > 50 GeV and  $m_{ii}$  > 1 TeV

Sensitive to **dimension-6 operator**:  $\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} Tr(W^{\mu\nu}W_{\mu\nu})\phi^{\dagger}\phi$ 

#### Significance of $5\sigma$ :

 $c_{\phi W}/\Lambda^2 \sim 35 \text{ TeV}^{-2} (300 \text{ fb}^{-1})$ 

$$c_{\phi W}/\Lambda^2 \sim 16 \text{ TeV}^{-2} \text{ (3000 fb}^{-1)}$$





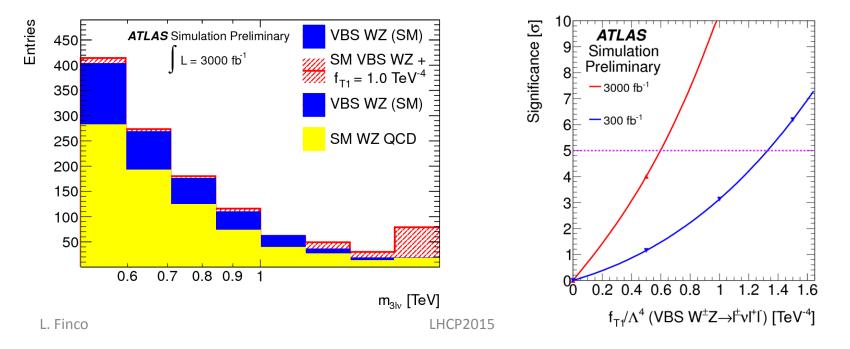
20

50

### VBS in WZ + 2 jets Channel (14 TeV)

#### **Standard VBS selection:**

- 3 leptons with  $p_T$  > 25 GeV
- 2 jets with  $p_T$  > 50 GeV and  $m_{ij}$  > 1 TeV


ATLAS

Sensitive to **dimension-8 operator**:  $\mathcal{L}_{T,1} = \frac{f_{T_1}}{\Lambda^4} Tr(\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}) \times Tr(\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu})$ 

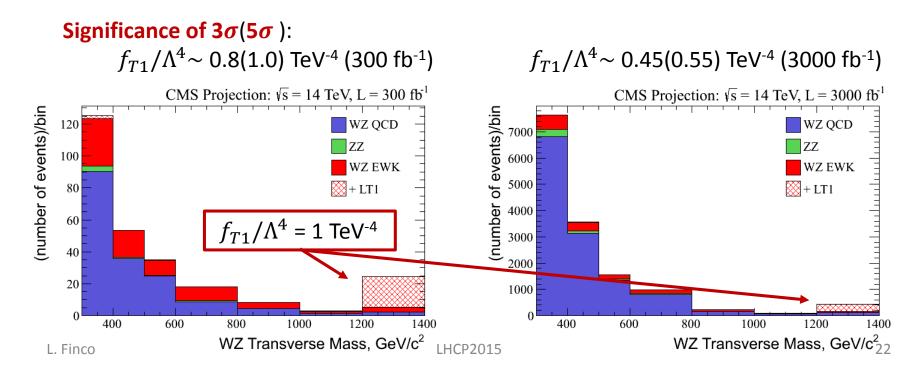
#### Significance of $5\sigma$ :



 $f_{T1}/\Lambda^4 \sim 0.6 \text{ TeV}^{-4}$  (3000 fb<sup>-1</sup>)



### VBS in WZ + 2 jets Channel (14 TeV)


#### **Standard VBS selection:**

- 3 leptons with  $p_T$  > 20 GeV
- 2 jets with  $p_T$  > 50 GeV,  $m_{jj}$  > 600 GeV and  $\Delta \eta_{jj}$  > 4



Sensitive to **dimension-8 operator**:  $\mathcal{L}_{T,1} = \frac{f_{T_1}}{\Lambda^4} Tr(\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}) \times Tr(\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu})$ 

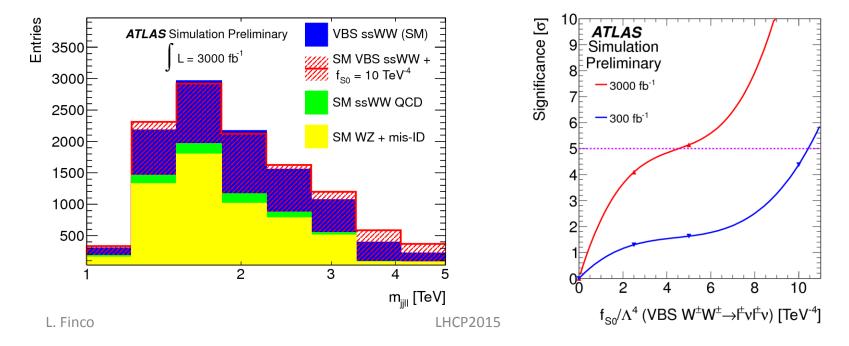
SM EW scattering discovery: 75 fb<sup>-1</sup> for  $3\sigma$  and 185 fb<sup>-1</sup> for  $5\sigma$  ( $m_{jj}$  > 1.2 TeV)



### VBS in W<sup>±</sup>W<sup>±</sup> + 2 jets Channel (14 TeV)

#### **Standard VBS selection:**

- 2 leptons with  $p_T$  > 25 GeV
- 2 jets with  $p_T$  > 50 GeV and  $m_{ij}$  > 1 TeV


23

Sensitive to **dimension-8 operator**:  $\mathcal{L}_{S,0} = \frac{f_{S0}}{\Lambda^4} \left[ \left( D_{\mu} \phi \right)^{\dagger} D_{\nu} \phi \right] \times \left[ \left( D^{\mu} \phi \right)^{\dagger} D^{\nu} \phi \right]$ 

#### Significance of $5\sigma$ :



 $f_{S0}/\Lambda^4 \sim 4.5 \text{ TeV}^{-4}$  (3000 fb<sup>-1</sup>)

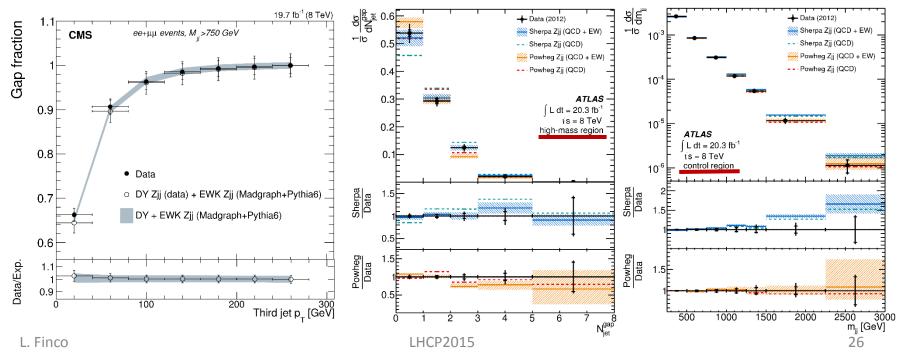


### Conclusions

VBS provides an **important test** of the **EW theory** and of the dynamics of EW symmetry breaking

- Still need to check if the 125 GeV Higgs unitarizes VBS processes completely or new physics will appear at high mass
- 7 and 8 TeV analyses started to investigate multi-boson final states and exclusion limits on possible SM deviations are set First evidence for a VBS dominated process at LHC in the  $W^{\pm}W^{\pm}jj$  channel
  - Studies at 13/14 TeV will increase the understanding of VBS and QGC

## Waiting for new data...

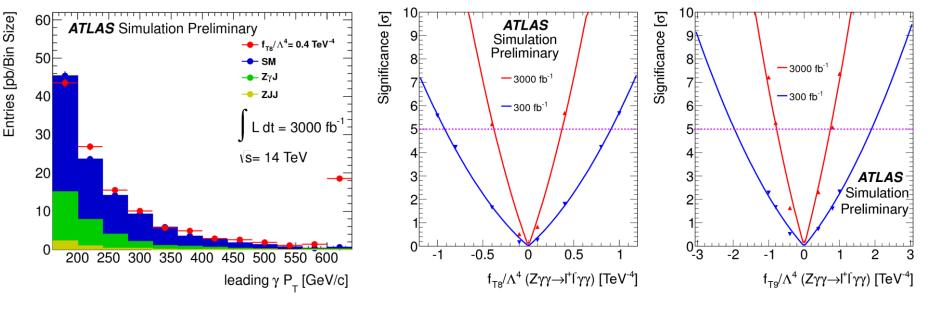

# Backup

## Z + F/B jets (8 TeV)

- AT LAS
- Study of the **hadronic activity** in the rapidity interval between the jets

**Rapidity gap** due to the exchange of colourless particle between the 2 initial quarks

- Possibility of **vetoing jets** in the central region (Atlas)
- Study of distributions related to the **3rd jet** (CMS)
- Several phase space regions with different EW and QCD Zjj contributions (Atlas)
- Differential distributions as a function of many observables sensitive to EW/QCD




## VBS in $Z\gamma\gamma$ Channel (14 TeV)

#### Selection:

- 2 leptons with  $p_T$  > 25 GeV (one lepton with  $p_T$  > 160 GeV)
- 2 photons with  $p_T$  > 25 GeV (one photon with  $p_T$  > 160 GeV)
- leptons and photons well separated

Sensitive to **dimension-8 operator**: 
$$\mathcal{L}_{T,8} = \frac{f_{T,8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
  
 $\mathcal{L}_{T,9} = \frac{f_{T,9}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$ 



