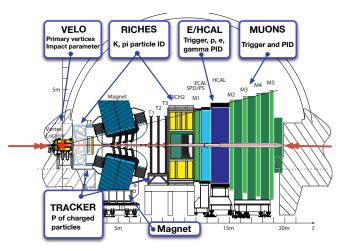
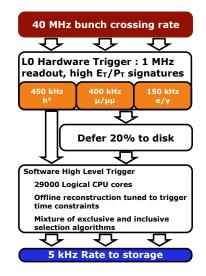
The LHCb Trigger in Run II

Roel Aaij

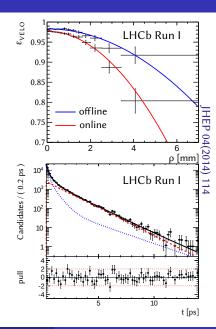

CERN, Geneva, on behalf of the LHCb collaboration

September 4th 2015

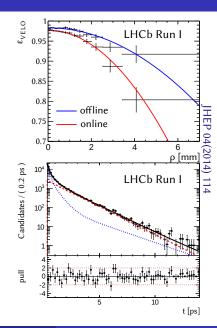
LHCP 2015, St. Petersburg



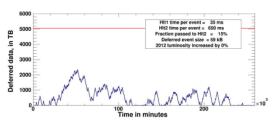
At 13 TeV and $\mathcal{L}=4\times10^{32}~\text{cm}^{-2}~\text{s}^{-1}$: \sim 45 kHz $b\overline{b}$ pairs and \sim 1 MHz $c\overline{c}$ pairs


Run I Trigger Overview

- LHCb detector read out at 1 MHz
- Hardware trigger (L0)
 - Based on multiplicity, calorimeters and muon detectors
 - Fixed latency of 4 μs
 - Reduces rate to 1 MHz
- Software trigger (HLT)
 - Runs on HLT farm
 - Split in two stages:
 HLT1 and HLT2
 - Events buffered to allow processing out of fill
 - Output rate 5 kHz
 - Total time budget O(35) ms/event

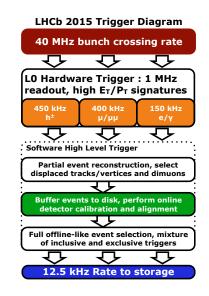

Run I Reconstruction

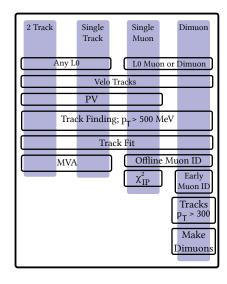
- Online:
 Best possible within CPU budget
- Offline:
 Best performance regardless of CPU
- Differences:
 - Pattern recognition
 - Alignment
 - No hadron PID online
 - Selections


Run I Reconstruction

- Online:
 Best possible within CPU budget
- Offline:
 Best performance regardless of CPU
- Differences:
 - Pattern recognition
 - Alignment
 - No hadron PID online
 - Selections
- Goal for Run II: run offline reconstruction online
- Offline quality alignment and calibrations needed online

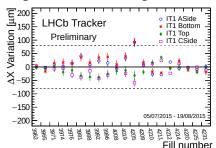
Deferred Triggering


- Stable beams 30% of the time
- Buffer events to allow for out of fill processing
- Larger real-time reduction allows more efficient use of buffers
 → buffer after HLT1 → HLT split in 2 applications
- 5000 TiB buffer on local disks
- Space for 160 hours of data with 150 kHz of 60 kiB events out of HLT1


- Allows HLT1 output to be used for calibration and alignment
- Sufficient buffer given LHC's uptime is comparable to 2012

Run II Trigger Overview

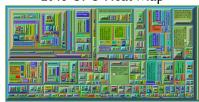
- LHCb detector read out at 1 MHz
- Hardware trigger (L0)
 - Based on multiplicity, calorimeters and muon detectors
 - Fixed latency of 4 μs
 - Reduces rate to 1 MHz
 - Higher thresholds in Run II
- Software trigger (HLT)
 - HLT farm nearly doubled.
 - HLT Split in two applications: HLT1 and HLT2
 - Events buffered after HLT1
 - Output rate 12.5 kHz
 - HLT software 40% faster



- Inclusive selections:
 - Single and two track MVA selections
 - $\bullet \sim 100 \text{ kHz}$
- Inclusive muon selections
 - Single and dimuon selections
 - Additional low p_T track reconstruction
 - $\sim 40 \text{ kHz}$
- Exclusive selections
 - Lifetime unbiased beauty and charm selections
 - Selections for alignment
- Low multiplicity trigger for central exclusive production analyses

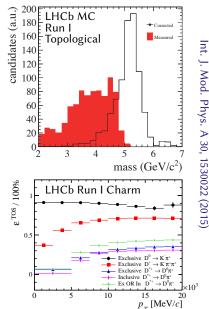
Real-Time Calibration and Alignment

- Same online and offline reconstructions requires prompt alignment and calibration
- Alignment per fill:
 - Collect suitable data with dedicated HLT1 selections, e.g. $D^0 \rightarrow K^+\pi^-$ and $J/\psi \rightarrow \mu^+\mu^-$
 - Run alignment workers on the HLT farm (1 per node)
 - Contoller iterates until converged, O(5) min
 - Apply updates of Velo and/or tracker alignment if needed
 - RICH mirror alignment and muon alignment for monitoring
 - ECAL gain calibration
- Calibration per 1 h run:
 - RICH and Outer Tracker t_0
 - Available O(1) minute after collection of data
- For more details see Manuel's talk and Varvara's poster.


HLT2 Reconstruction

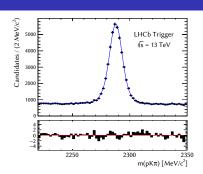
2012 CPU Heat Map

- Full event reconstruction
- Starts from HLT1 objects
- All charged tracks
- Neutral particles
- RICH, Muon and Calo PID
- Same reconstruction online and offline
- 30% speedup achieved

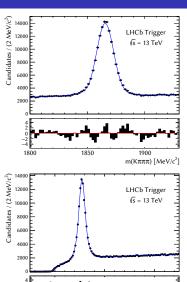

2015 CPU Heat Map

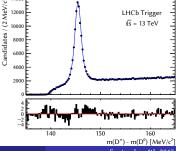
Reconstruction	Run II	Run I
HLT1 rate	\sim 150 kHz	$\sim 80 \mathrm{kHz}$
HLT1 time	\sim 35 ms	$\sim~20~ms$
Track finding	\sim 200 ms	
Track fit	\sim 100 ms	
Calorimeter reco	\sim 50 ms	
RICH PID	\sim 180 ms	
Muon ID	\sim 200 ms	
Total HLT2	\sim 650 ms	$\sim\!\!150~\text{ms}$
HLT2 rate	$\sim~12.5\mathrm{kHz}$	\sim 5 kHz

HLT2 Selections


- Inclusive beauty selections:
 - MVA based 2, 3, and 4 body detached vertices
 - Dimuon selections
- Exclusive beauty selections:
 - E.g. $B \rightarrow \phi \phi$, $B \rightarrow \gamma \gamma$
- Charm selections
 - Inclusive selection of $D^* \rightarrow (D^0 \rightarrow X) \pi^+$
 - Charmed baryons
 - Final states with K_s⁰
 - 2,3,4,5—body final states
- Flectroweak bosons
- Nearly 400 selections in total
- 12.5 kHz to tape

Turbo Stream


- Offline reconstruction available online


 → do physics analysis with HLT
 candidates
- Turbo stream:
 - Store HLT candidate information.
 - Remove most of detector raw data.
 - Space required reduced by > 90 %.
- Ideal for high-yield analyses.
- O(24) h turn-around.

Turbo Stream

- Offline reconstruction available online \rightarrow do physics analysis with HLT candidates
- Turbo stream:
 - Store HLT candidate information.
 - Remove most of detector raw data.
 - Space required reduced by > 90 %.
- Ideal for high-yield analyses.
- O(24) h turn-around.

Summary

- Full offline-quality reconstruction available online
- Calibration and alignment running online
- HLT reorganised to allow buffering after HLT1
- Additional HLT farm purchased, now effectively 2 times larger
 - 1800 servers
 - 27000 physical cores
 - 5 PiB disk space
- Software optimised to fit reconstruction in time budget
- Turbo stream implemented; first results public, e.g.
 - Measurement of forward J/ ψ production cross-sections in pp collisions at $\sqrt{13}$ TeV
 - $c\bar{c}$ cross-sections in pp collisions at $\sqrt{13}$ TeV