

Latest Heavy Flavour results from Tevatron

G.Borissov, Lancaster University, UK Representing D0 and CDF collaborations LHCP 2015 St. Peterburg, 4 September 2015

Introduction

- Tevatron was closed about four years ago but the experiments (D0 and CDF) are still very active in producing physics results
- Heavy flavour (HF) results from Tevatron are currently dominated by D0, although CDF also obtained several interesting results
- There are some advantages of the Tevatron data sample especially important for the HF studies
 - CP-symmetric initial state ($p\overline{p}$ collision)
 - Regular reversal of magnet polarities (for D0 experiment)
 - Low pile-up
- Many of the new results are related to the measurement of the charge asymmetry of the final states

In this talk

- B^+B^- forward-backward asymmetry (D0)
- $b\overline{b}$ forward-backward asymmetry (CDF)
- $\Lambda_b \overline{\Lambda}_b$ forward-backward asymmetry (D0)
- $A\overline{A}$ forward-backward asymmetry (D0)
- Test of CPT symmetry (D0)
- *X*(4140) production (D0)

B^+B^- FB asymmetry (D0)

• FB asymmetry of *b*-quark production

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

- Forward direction for b quark (B^- meson) is the same as the direction of the incoming proton
- Forward direction for \overline{b} quark (B^+ meson) is the same as the direction of the incoming \overline{p}
- The measurement is performed using a cleanly reconstructed $B^{\pm} \rightarrow J/\psi K^{\pm}$ decay
- Studying this asymmetry can help to understand the $t\bar{t}$ forward-backward asymmetry
- Good test of the SM

B^+B^- FB asymmetry (D0)

8 (a) DØ, $L = 10.4 \text{ fb}^{-1}$ A_{FB} D0 does not observe any significant FB asymmetry $A_{\rm FB}(\rm D0) = [-0.24 \pm 0.42 \pm 0.19]\%$ Data MC@NLO Result is published in $0.1 < |\eta| \le 0.7$ $0.7 < |\eta| \le 1.2$ $|\eta| > 1.2$ PRL 114, 051803(2015) $|\eta(\mathbf{B})|$ A_{FB} (%) D0 result differs by 3.5σ from 6 (b) $D\emptyset$, $L = 10.4 \text{ fb}^{-1}$ the SM prediction (MC@NLO)

 $A_{\rm FB}(\rm SM) = [+2.31 \pm 0.34 \pm 0.44]\%$

-6

Data

- MC@NLO

> 30

 $p_{_{T}}(B)$ (GeV)

9 - 11 11 - 15 15 - 20 20 - 30

Comparison with SM

Improved calculations
 (C. W.Murphy, arXiv: 1504.02493)
 restore the agreement with the SM

04 September 2015

G.Borissov, Heavy Flav

bb F-B asymmetry (CDF)

• CDF measures jet charge (high mass analysis) or muon charge (low mass analysis) of two b jets and determine the F-B asymmetry defined as:

$$A_{FB} = \frac{n(\Delta y > 0) - n(\Delta y < 0)}{n(\Delta y > 0) + n(\Delta y < 0)}$$
$$\Delta y = y(b) - y(\overline{b})$$

- Obtained result are consistent with the SM prediction
 - <u>Phys. Rev. D 92, 032006 (2015)</u>
 - <u>CDF note 11156</u>

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

- Forward direction of $A_{\underline{b}}$ proton beam
- Forward direction of Λ_b anti-proton beam
- Result (<u>Phys.Rev. D91, 072008 (2015)</u>)

 $A_{\rm FB}(A_b) = 0.04 \pm 0.07 \pm 0.02$

- Consistent with zero
- Consistent with theoretical models (J. Rosner, Phys. Rev. D 90, 014023 (2014))
- Consistent with the measurements at LHC

Lancaster Universitv

G.Borissov, Heavy Flavour

- Preliminary result obtained
 - <u>D0 note 6464-CONF</u>
 - Results are consistent with the measurements at different energies and

anti-/// production ratio

- X(4140) is an unidentified object decaying to $X(4140) \rightarrow J/\psi \varphi$
- First observed by CDF in $B^+ \rightarrow J/\psi \ \varphi \ K^+$ decay
- LHCb did not confirm it (Phys Rev. D 85, 091103 (2012)
- Later confirmed by CMS (Phys.Lett. B 734, 261 (2014) and D0 (Phys. Rev. D 89, 012004 (2014)
- Observed only in B^+ decay so far
- New analysis of D0 studies the inclusive production of this object
- Measure its production as a function of its decay length
 - To disentangle the prompt and secondary (from B-hadron decays) components in the X(4140) production
 - Normalize to the production of $B_s \rightarrow J/\psi \varphi$

X(4140) production

• *X*(4140) is clearly seen even at small proper decay length where the B-hadron contribution is small

- arXiv: 1508.07846, submitted to PRL
- New measurement of mass and width of *X*(4140)
- Fraction of *X*(4140) originating from B hadrons is

 $f_b = 0.39 \pm 0.07 \pm 0.10$

• Significance of prompt production is 4.7σ

TABLE III: Summary of X(4140) measurements

Experiment	Process	Mass (MeV)	Width (MeV)
CDF [2]	$B^+ \to J/\psi \phi K^+$	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$
CMS [4]	$B^+ \to J/\psi \phi K^+$	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$
D0[5]	$B^+ \to J/\psi \phi K^+$	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+3.0}_{-8.0}$
D0 (this work)	$\overline{p}p \rightarrow J/\psi \phi + anything$	$4152.5 \pm 1.7^{+4.7}_{-3.6}$	$16.3 \pm 5.6 \pm 10.3$

Test of CPT invariance

• The oscillation of the B_s system may depend on the CPT-violating parameter ξ_s :

$$|B_{sL}\rangle \propto p\sqrt{1-\xi_s}|B_s^0\rangle + q\sqrt{1+\xi_s}|\bar{B}_s^0\rangle, |B_{sH}\rangle \propto p\sqrt{1+\xi_s}|B_s^0\rangle - q\sqrt{1-\xi_s}|\bar{B}_s^0\rangle.$$

- Its non-zero value means CPT violation

- CPT violation means the violation of the Lorentz invariance
- Thus, one consequence of the CPT violation would be the dependence of the charge asymmetry of the semileptonic B_s decay on the sidereal time (meaning violation of the Lorentz invariance)
 - Sidereal time time scale that is based on the Earth's rate of rotation measured relative to the fixed stars rather than the Sun

Test of CPT invariance

• Taken from: I. Bertram, talk at EPS-2015

04 September 2015

G.Borissov, Heavy Flavour results from Tevatron

Test of CPT invariance

- B_s semileptonic charge asymmetry is measured as a function of the sidereal phase using the $B_s \rightarrow D_s \mu v$ decay
- The result is expressed in the form of the constraint on the Lorentzviolating four-vector field Δa_{β}

 $\Delta a_{\perp} < 1.2 \times 10^{-12} \text{ GeV}$

 $(-0.8 < \Delta a_T - 0.396 \Delta a_Z < 3.9) \times 10^{-13} \text{ GeV}$

- Submitted to PRL; arXiv: 1506.04123
- Δa_T is the time component of Δa_β
- No CPT violation observed
- The first such limit for the B_s system
 - Need the value Δa_T−0.396Δa_Z ≈ 3.7×10⁻¹² GeV to explain the dimuon asymmetry of D0 experiment
 (V. Kostelecky and R. van Kooten, Phys. Rev. D82, 101702 (2010)

04 September 2015

G.Borissov, Heavy Flavour results from Tevatron

- Tevatron experiments still produce the new results in heavy flavour physics which are complementary to the LHC measurements
- Several tests of FB production asymmetry are performed
- New observation of *X*(4140)
- The first limit on CPT violation in B_s system