

ATLAS CP violation and rare B decays

V.Nikolaenko

IHEP Protvino

on behalf of the ATLAS collaboration

2 September 2015

Outlook

- Introduction
- Measurement of CP-violation parameters in B_s →J/ψφ decay

 $\Delta\Gamma_s$ and φ_s from Flavour-tagged time-dependent analysis

- Analysis of 2012 data
- Combination of results from data at 7 and 8 TeV
- Limit on BR(B_s (5366) $\rightarrow \mu^+ \mu^-$) decay
- Determination of f_s /f_d ratio
- Summary

Introduction

- B-physics results are based on statistics acquired mainly with di-muon triggers.
- Requirements on muons p_t mostly 4 GeV/c (for small fraction of events with high instantaneous luminosity increased to 6 GeV/c)

No preference for di-muon mass close to $B_s(5366)$ mass was applied.

B_s time evolution parameters

- Like the K^0 meson, B_s meson can be produced in CP-even or CP-odd state with different lifetimes. $\Delta \Gamma_s$ is a difference between inverse lifetimes. CP-odd state has a longer lifetime than the CP-even one, the relative difference is ~13-17%.
- Observed $(b \ \overline{s}) \leftrightarrow (\overline{b} \ s)$ oscillations via box diagrams with intermediate u, c, t $q\overline{q}$ pairs in t-channel and possibly New Physics. The mass difference between heavy (B^H) and light (B^L) CP-eigenstates leads to measured oscillation frequency $\Delta m_s 17.77 \ ps^{-1}$.
- CP-violating phase ϕ_s manifests itself in interference terms between mixing and decay amplitudes

B_s time evolution and B_s \rightarrow J/ $\psi \varphi$ decay

- In SM, phase $\phi_s \approx -2 \beta s_s$, where β_s is angle in Kobayashi-Maskawa triangle, $\beta_s = \arg\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \text{(NOT β angle in other unitary triangle,} \\ \text{with d instead of s quark, see PDG!}$
- SM predictions: $\Delta\Gamma = 0.087 \pm 0.021$ ps $\phi_s = -0.0363^{+16}$ rad Phys. Rev. D, 84 (2011), p. 033005
- Measurements of ϕ_s and $\Delta\Gamma$ test theoretical predictions.
- The analysis of data at 8 TeV is similar for published analysis of 7 TeV data (Phys.Rev. D90 (2014) 052007). The number of signal events at 8 TeV is greater by a factor of 3. Due to high statistics, more detailed study of acceptance, signal shape and background was performed. Also Electron tagging was applied. Finally, results at 8 and 7 TeV were statistically combined.

Partial waves in J/ψφ analysis

- $B_s \rightarrow J/\psi \phi \rightarrow (\mu^+ \mu^-)(K^+ K^-)$ without Kaon identification
- $B_s \rightarrow J/\psi \phi$ pseudo-scalar to vector-vector decay, waves :
- CP-even (L=0,2) and CP-odd (L=1) final states,
- added 4th wave with (KK) in S-wave, J/ψKK
- Distinguishable through time-dependent angular analysis
- Used 3 angles between final-state particles in Transversity basis
 - Multi-dimensional fit to the data; three amplitudes and strong phases extracted.

 A_0 — longitudinal CP-even final state A_{\parallel} — transverse CP-even A_{\perp} — transverse CP-odd δ_0 = 0 δ_{\parallel} = $\arg[A_{\parallel}(0)A_0^*(0)]$ δ_{\perp} = $\arg[A_{\perp}(0)A_0^*(0)]$

- 3 amplitudes and strong phases extracted alongside with φ_s and ΔΓ_s
- 4-th amplitude A_s and phase δ_s for J/ ψ KK (CP-odd) also determined from the fit.

Event selection in 2012 data analysis

- Events selected from $\mu^+ \mu^-$ pairs using 14.3 fb ⁻¹ data acquired at \sqrt{s} = 8 TeV.
- 2 other opposite sign tracks with $p_{t} > 1$ GeV/c and $|\eta| < 2.5$ taken with Kaon mass.
- Retain pairs consistent with ϕ : 1008.5 < m(K⁺ K⁻) < 1030.5 MeV.
- 4-track Vertex Fit, using J/ ψ mass constraint, χ^2 /NDF < 3.
- Primary vertex selected with smallest 3D-impact parameter.
- Proper decay time:

$$t = \frac{L_{xy}M_B}{p_{T_B}}$$
 with B_s World

Average mass M_B

- 376 K B_s candidates in range:
 5.150 5.650 GeV
- 75100 ± 400 B _s signal candidates extracted from the fit

22670 ± 150 in 2011 data

No decay time cut applied in analysis

b-quark charge tagging

Identification of b or anti-b quark in B_s at the production time improves precision of φ_s measurement and helps with sign ambiguities

Information from opposite side tagging used, i.e. leptons and/or jet charge from decay of 2nd B-hadron in the event

Methods were calibrated on B+--candidates in data

Fit model – signal component

- Unbinned likelihood fit: 9 physics parameters

Observables:

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{w_i \ln(f_s \mathscr{F}_s(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) + f_s \cdot f_{B^0} \cdot \mathscr{F}_{B^0}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) - \mathbf{M}(J/\psi KK), \boldsymbol{\tau}, \boldsymbol{\sigma}(\boldsymbol{\tau}) \\ + (1 - f_s \cdot (1 + f_{B^0})) \mathscr{F}_{bkg}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) \} - \mathbf{Tagging probability}$$

Signal components: Mass – Triple Gaussian; Lifetime – 2 Exp ⋅ Gaussian (per-candidate error)

Angular functions; Tagging probability distribution (PDF)

Scaling factor was applied to per-event timing errors from the Vertex fit.

It was estimated from negative tail in distribution, due to absence of lifetime selection in Trigger.

With 4 decay channels -> 4 diagonal + 6 non-diagonal Angular & Lifetime functions, an example:

AMPL	O ^(k) f(t)	$g^{(k)}\left(\theta_{\scriptscriptstyle T}$, $\psi_{\scriptscriptstyle T}$, $\Phi_{\scriptscriptstyle T}$)
$(1/2) A_0(0) ^2$	$(1+\cos(\phi_s))\exp(-\Gamma_L^{(s)}t) + (1-\cos(\phi_s))\exp(-\Gamma_H^{(s)}t) \pm$	$2\cos^2 \psi_T (1-\sin^2 \theta_T \cos^2 \phi_T)$
	± 2 exp(-Γ _s t) sin(Δ m _s t) sin(φ _s)	

oscillating term with $sin(\phi_s)$ arises due to Tagging , other terms with $cos(\phi_s)$

Angle ϕ_s is small -> terms with $\sin(\phi_s)$ significantly improves precision of ϕ_s measurement

Time and angular functions for $B_s \rightarrow J/\psi \varphi$

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(\theta_T, \psi_T, \phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\rm H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$ \frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_{s}$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))$	•
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_S(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\sin(\delta_{\parallel} - \delta_S)\sin\phi_s$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$ A_0(0) A_S(0) \frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Fit model – background components

Unbinned likelihood fit: 9 physics parameters

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) + f_s \cdot f_{B^0} \middle| \mathcal{F}_{B^0}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) + (1 - f_s \cdot (1 + f_{B^0}) \middle| \mathcal{F}_{bkg}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q)) \}$$

- m(J/ ψ KK), τ , σ (τ)
- $\Omega = (\theta_T, \psi_T, \phi_T)$
- Tagging probability

B_d component :

Mis-reconstructed $B_d \rightarrow J/\psi K^{*0}$

Mass: Landau shape from MC

Lifetime: Exp · Gaussian

(per candidate errors)

(slope fixed to PDG lifetime)

Angular distributions: taken from 3D-fits to MC

Combinatorial BG component

Mass: Exp function

Lifetime: Prompt Exp(±t), and 2 Exp(t>0)

Angular distributions: Spherical harmonics

from side-bands regions

"Punzi" terms – accounting for differences between Data and MC in Tagging Efficiency and lifetime uncertainties, Determined from the data

Angular fit projections

- θ is the angle between $p(\mu^+)$ and x-y plane in the J/psi meson rest frame
- φ is the angle between the x-axis and the projection of $p_{xy}(\mu^+$), the projection of the μ^+ momentum in the x-y plane, in the J/ ψ rest frame
- ψ is the angle between p(K⁺) and –p(J/ ψ) in the φ meson rest frame.

Systematic uncertainties in physics parameters

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	$\delta_{ }$	$\delta_{\perp} - \delta_{S}$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$	"			[rad]	[rad]	[rad]
			2	2	2				
Tagging	0.026	0.003	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.238	0.014	0.004
Acceptance	$<10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.003	$< 10^{-3}$	0.001	0.004	0.008	$< 10^{-3}$
Background angles model:									
Choice of $p_{\rm T}$ bins	0.02	0.006	0.003	0.003	$< 10^{-3}$	0.008	0.004	0.006	0.008
Choice of mass interval	0.008	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.021	0.005	0.003
B_d^0 background model	0.008	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.008	0.007	$< 10^{-3}$	0.005
Fit model:									
Default fit	0.001	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.025	0.015	0.002
Mass Signal model	0.004	$< 10^{-3}$	$< 10^{-3}$	0.002	$< 10^{-3}$	0.001	0.015	0.017	$< 10^{-3}$
Mass Background model	$<10^{-3}$	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.027	0.038	$< 10^{-3}$
Time Resolution model	0.003	$< 10^{-3}$	0.001	0.002	$< 10^{-3}$	0.002	0.057	0.011	0.001
Total	0.036	0.007	0.003	0.006	0.001	0.013	0.25	0.05	0.01

Results at 8 TeV and Combination

- Results from 8 TeV measurement:
- $\phi_s = -0.119 \pm 0.088$ (stat.) ± 0.036 (syst.) rad
- $-\Delta\Gamma_{s} = 0.096 \pm 0.013$ (stat.) ± 0.007 (syst.) ps⁻¹
- Correlation $(\phi_s, \Delta\Gamma_s) = 0.110$

- Combination of results:
- Statistical combination
- Best Linear Unbiased Estimate (BLUE)
 of 7 TeV and 8 TeV results
- Minimizes the variance in the estimators

$B_s \rightarrow J/\psi \varphi$ combined results

- Preliminary measurement of the time-dependent flavoured-tagged CP asymmetry parameters in decays $B_s \rightarrow J/\psi \varphi$

- 14.3 fb ⁻¹ from 8 TeV
- statistically combined with previous result at 7 TeV 4.9 fb⁻¹

Phys.Rev. D90 (2014) 052007

- CP-violating phase, ϕ_s ,
- consistent with other experiments and SM predictions

$$\phi_s = -0.0363^{+16}_{-15}$$
 rad $\Delta \Gamma_s^{(SM)} = 0.087 \pm 0.0021$ ps ⁻¹

Parameter	Value	Stat.	Syst.	
Фѕ	-0.094	0.083	0.033	rad
ΔΓs	0.082	0.011	0.007	ps ⁻¹
Гѕ	0.677	0.003	0.003	ps-1
I A _{II} (0)I ²	0.227	0.004	0.006	
IA ₀ (0)I ²	0.515	0.004	0.002	
IA _s (0)I ²	0.086	0.007	0.012	
δ_{\perp}	4.13	0.34	0.15	rad
$\delta_{\rm II}$	3.16	0.13	0.05	rad
δ_{\perp} - $\delta_{ extsf{s}}$	-0.08	0.03	0.01	rad

combination of other measurements

$B_s \rightarrow \mu^+ \mu^- \text{ decay}$

- Decays $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ are suppressed in SM
- Recent predictions in SM:

• BR(B_s⁰
$$\rightarrow \mu^+ \mu^-$$
) = (3.65±0.23)·10⁻⁹

C.Bobeth et al., PRL

• BR(B⁰
$$\rightarrow \mu^+ \mu^-$$
) = (1.06±0.09)·10⁻¹⁰

112, 101801 (2014)

Combined result from LHCb and CMS:

• BR(B_s⁰
$$\rightarrow \mu^{+}\mu^{-}$$
) = (2.8^{+0.7}_{-0.6})·10⁻⁹

Nature 522 (2015) 68

• BR(B⁰
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.9^{+1.6}_{-1.4})·10⁻¹⁰

ATLAS result on 4.9 fb⁻¹ data at 7 TeV:

G.Aad et al., PL B713 387

• BR(
$$B_s^0 \rightarrow \mu^+ \mu^-$$
) < 19·10⁻⁹ at 90% C.L.

Analysis on full Run 1 data is going to be completed soon!

Determination of ratio of b-quark fragmentation functions f_s/f_d

- Used exclusive decays $B_s \rightarrow J/\psi \varphi$ and $B_d \rightarrow J/\psi K^{*0}(890)$ at $\sqrt{s}=7$ TeV, integrated luminosity 2.47 fb⁻¹ e-Print: arXiv:1507.08925
- With 6640±100±220 $B_s \rightarrow J/\psi \phi$ and 36290±320±650 $B_d \rightarrow J/\psi K^{*0}$ decays,

 $f_s/f_d = 0.240\pm0.004(stat.)\pm0.013(syst.)\pm0.017(br.)$ at $p_T > 8$ GeV/c.

used BR(Bs_s \rightarrow J/ ψ φ)/BR(B_d \rightarrow J/ ψ K*) ratio from X.Liu et al. PRD 89 (2014) 094010

This result is consistent with previous measurements. It is also useful for measurement of the BR(B⁰ \rightarrow J/ ψ μ^+ μ^-).

Compilation of measurements of b-quark fragmentation functions f_s/f_d

Summary

- ATLAS can provide precise measurements in B-decays, which are relevant for searches of effects beyond SM
- - CP-violating phase ϕ_s and decay width difference $\Delta\Gamma$
 - analyzed 2012 data
 - statistical combination 2011+2012 (4.6+14.3 fb⁻¹)

$$\phi_s = -0.094 \pm 0.083(stat.) \pm 0.033(syst.)$$
 rad

$$\Delta\Gamma = 0.082 \pm 0.011 \pm 0.007 \text{ ps}^{-1}$$

- consistent with SM predictions and other experiments
- - $B_s \rightarrow \mu^+\mu^-$ analyzed 2011 data, full Run 1 result expected soon
- - The ratio of b-quark fragmentation functions measured at $p_T > 8$ GeV/c

$$f_s/f_d = 0.240\pm0.004(stat.)\pm0.013(syst.)\pm0.017(br.)$$

- - $B_d \rightarrow K^{*0} \mu^+ \mu^-$ analysis on full Run 1 is ongoing
- Statistical errors dominate in measurements, we expect better precision from Run 2 due to modifications in ATLAS (IBL) and significantly more statistics.

References

- ATLAS:
- Flavor tagged time-dependent angular analysis of the $B_s \rightarrow J/\psi \varphi$ decay and extraction of $\Delta \Gamma_s$ and the weak phase φ_s in ATLAS, Phys. Rev. D90 (2015) 5, 052007, arXiv:1407.1796
- Limit on $B_s^0 \to \mu^+\mu^-$ branching fraction based on 4.9 fb⁻¹ of integrated luminosity, ATLAS-CONF-2013-076 http://cds.cern.ch/record/1562934
- Search for the decay $B^{o}_{s} \rightarrow \mu\mu$, Phys. Lett. B713 (2012) 387, arXiv:1204.0735
- LHCb
- Precision measurement of CP violation in $B_s \rightarrow J/\psi K^+K^-$ decays,
- Phys.Rev. Lett. 114 (2015) 041801, arXiv:1411.3104

References

- LHCb & CMS:
- Observation of the rare $B_s^0 \rightarrow \mu^+ \mu^-$ decay from combined analysis of CMS and LHCb data, Nature 522 (2015) 68, and ref. therein
- CMS
- Measurement of the CP-violating weak phase ϕ_s and the decay width difference $\Delta\Gamma$ using the $B_s \rightarrow J/\psi \phi(1020)$ decay channel, Tech.Rep. CMS-PAS-BPH-13-012, CERN, Geneva, 2014
- arXiv:1507.07527 submited to PL B

Backup slide: Correlation matrix between $B_s \rightarrow J/\psi \varphi$ decay parameters

	фѕ	ΔΓ	$\Gamma_{\!s}$	A (0) ²	A ₀ (0) ²	A _s (0) ²	δ_{\parallel}	$oldsymbol{\delta}_{tr}$	$\boldsymbol{\delta}_{tr}$ - $\boldsymbol{\delta}_{s}$
фѕ	1.000	0.094	-0.072	0.028	0.028	0.048	0.062	-0.016	-0.009
ΔΓ		1.000	-0.377	0.113	0.145	0.068	0.012	0.012	-0.012
$\Gamma_{\rm s}$			1.000	-0.126	-0.043	0.172	-0.026	-0.009	0.019
$ A_{\parallel}(0) ^2$				1.000	0.326	0.081	0.095	0.024	-0.018
$ A_0(0) ^2$					1.000	0.220	-0.008	0.006	0.012
$ A_{s}(0) ^{2}$			D	RY		1.000	-0.042	-0.002	0.050
δ∥			MIL				1.000	0.165	0.016
δ tr		PRE	ININA					1.000	0.010
δ_{tr} - δ_{s}		•							1.000