

LHCb Rare Decays

Giovanni Veneziano on behalf of the LHCb collaboration

- Rare decays are the perfect playground for indirect searches of New Physics (NP)
 - ✓ $BR \sim 10^{-5} 10^{-10}$ are now accessible
 - ✓ Small effects may cause substantial variations from SM expectations

- The SM relies on lepton universality
 - ✓ Non-SM Higgs-like charged scalars may couple differently to the three lepton generations
- FCNC transitions in the SM are described by loop diagrams sensitive to NP scenarios
 - ✓ Heavy virtual particles may enter the loop and affect the observables (*BR*, *A_{CP}*)

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

- ✓ Very precise vertex location $\sigma_{IP} = 20 \ \mu m$
- ✓ Excellent tracking resolution $\Delta p/p = 0.5 1 \%$
- ✓ Very good PID performances $\epsilon_{detection}(K) \sim 95\%(85\%)$ with 10%(3%) π misId
- \checkmark Very efficient muon and dimuon trigger

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

- ✓ Very precise vertex location $\sigma_{IP} = 20 \ \mu m$
- ✓ Excellent tracking resolution $\Delta p/p = 0.5 1 \%$
- ✓ Very good PID performances $\epsilon_{detection}(K) \sim 95\%(85\%)$ with 10%(3%) π misId
- \checkmark Very efficient muon and dimuon trigger

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

LHCb Integrated Luminosity pp collisions 2010-2012

- ✓ A total luminosity of ~ 3 fb⁻¹ has been recorded during LHC run I
- \checkmark Run II has started

[See LHCb talks from Monday]

G. Veneziano

Latest rare decays results

5

G. Veneziano

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

Motivation

arXiv:1506.08614 B \rightarrow D* τv

- Semileptonic B decays are theoretically well understood
 - ✓ Tree level virtual W emission

✓ Lepton universality implies that the *BR* for the semileptonic decays to *e*, μ and τ differ only for phase-space and helicity-suppressed contributions

- R(D*) provides a test for lepton universality
 - ✓ Sensitive to non-SM particles coupling to third generation fermions (*e.g.* charged Higgs)
 [M. Tanaka, Z Phys C67 (1995) 321]
 - ✓ Form factor uncertainties cancellation
 - ✓ First measurement of $R(D^*)$ at a hadron collider

Analysis strategy

- Look for $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
 - \checkmark Signal and normalisation channel have the same visible final state
 - \checkmark Same reconstruction and selection applied
 - ✓ Signal and normalisation channels are distinguished from the different kinematics

Analysis strategy

- Look for $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
 - \checkmark Signal and normalisation channel have the same visible final state
 - \checkmark Same reconstruction and selection applied
 - ✓ Signal and normalisation channels are distinguished from the different kinematics

- For the signal in the B rest frame
 ✓ m²_{miss} is larger
 - ✓ The q^2 spectrum starts at m_{τ}^2
 - ✓ E^*_{μ} spectrum is softer

$$\begin{split} m_{\rm miss}^2 &= (p_B^{\mu} - p_{D^*}^{\mu} - p_{\mu}^{\mu})^2 \\ q^2 &= (p_B^{\mu} - p_{D^*}^{\mu})^2 \\ E_{\mu}^* \text{ is the muon energy} \end{split}$$

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^- \bar{\nu}_{\mu})$

Results

- The projections of the multidimensional maximum likelihood fit are shown
 - ✓ Signal is suppressed wrt normalisation because of phase-space and $\mathcal{BR}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) \sim 17\%$

 $R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^- \bar{\nu}_{\mu})$

Results

- The projections of the multidimensional maximum likelihood fit are shown
 - ✓ Signal is suppressed wrt normalisation because of phase-space and $\mathcal{BR}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) \sim 17\%$

 $R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

Results

- The projections of the multidimensional maximum likelihood fit are shown
 - ✓ Signal is suppressed wrt normalisation because of phase-space and $\mathcal{BR}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) \sim 17\%$

$$R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$$

Motivation

- FCNC b \rightarrow s transitions sensitive to new physics effects
 - ✓ Branching fraction significantly lower than SM predictions observed in 2011 data (1 fb⁻¹)

✓ Same trend observed in other b → sµµ transitions (e.g. $B_s \rightarrow K^* \mu^+ \mu^-$) \checkmark 3 fb⁻¹ update

Branching fraction

- The analysis is performed in bins of dimuon invariant mass q^2
 - ✓ Charmonium background decays can be vetoed $q^2 \notin [8, 11] \text{ GeV}^2/c^4$ and $q^2 \notin [12.5, 15] \text{ GeV}^2/c^4$
- The branching fraction in a q² bin is obtained from

$$\frac{\mathrm{d}\mathcal{B}\mathcal{R}(\mathrm{B}_{\mathrm{s}}\to\phi\mu\mu)}{\mathrm{d}q^{2}} = \frac{1}{q_{\mathrm{max}}^{2} - q_{\mathrm{min}}^{2}} \times \frac{N_{\phi\mu\mu}}{N_{\phi J\psi}} \times \frac{\epsilon_{\phi J\psi}}{\epsilon_{\phi\mu\mu}} \times \mathcal{B}\mathcal{R}(B_{s}\to\phi J/\psi) \times \mathcal{B}\mathcal{R}(J/\psi\to\mu\mu)$$

 $\checkmark B_s \rightarrow \phi \; J/\psi \text{ is used as normalisation channel}$

✓ BR(J/ ψ → $\mu\mu$) from PDG

 \checkmark relative efficiencies from simulation

• Yields determined from an unbinned maximum likelihood fit to m_{B_s}

LHCb Rare Decays — LHCP 2015 St Petersburg, Russia

Branching fraction

• The mass fit integrated over all the q² bins is shown

- ✓ At low q² the B_s → $\phi\mu^+\mu^-$ branching fraction is 3.5 σ below the SM
- ✓ New physics in C₉ ?

 $\frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi)} = (7.40^{+0.42}_{-0.40 \text{ stat.}} \pm 0.16_{\text{sys.}} \pm 0.21_{\text{extrapol.}}) \cdot 10^{-4}$ $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (7.97^{+0.45}_{-0.43 \text{ stat.}} \pm 0.18_{\text{sys.}} \pm 0.23_{\text{extrapol.}} \pm 0.60_{J/\psi \phi}) \cdot 10^{-7}$

Angular analysis

- The angular analysis relies on the angles ϑ_l , ϑ_K and ϕ
 - ✓ Eight observables: CP averages (F_L , $S_{3,4,7}$) and CP asymmetries ($A_{5,6,8,9}$)

- ✓ More than in $K^*\mu\mu$ because $\phi\mu^+\mu^-$ is not flavour-tagged
- ✓ The asymmetries A₈ and A₉ are zero in the SM, and expected to be sensitive to new physics
- 3D maximum likelihood fit in bins of q²

Angular analysis

Angular analysis and differential branching fraction of the decay $B_s^0 \to \phi \mu^+ \mu^-$

arXiv:1506.08777 B_s $\rightarrow \phi \mu \mu$

Angular analysis

• The observables are in agreement with the SM

Motivation

- FCNC b \rightarrow d transition, sensitive to new physics effects
 - ✓ Measurements of the differential branching fraction in q^2 bins
 - \checkmark Computation of CKM elements $|V_{td}|,\,|V_{ts}|$ and their ratio
 - $\checkmark First A_{CP} \text{ measurement in a } b \rightarrow d \text{ transition}$
 - ✓ 3 fb⁻¹ update on the branching fraction

Branching fraction

- The differential branching fraction in q² bins is evaluated
 ✓ Charmonium background decays are vetoed
- The $\pi\mu\mu$, K $\mu\mu$ and KJ/ $\psi(\rightarrow\mu\mu)$ mass distributions are fitted simultaneously
 - ✓ The branching fraction is determined normalising to B → K J/ ψ (→ µµ) $\mathcal{BR}(B \to \pi \mu \mu) = \frac{N_{\pi \mu \mu}}{N_{KJ/\psi}} \times \frac{\epsilon_{KJ/\psi}}{\epsilon_{\pi \mu \mu}} \times \mathcal{BR}(B_s \to KJ/\psi) \times \mathcal{BR}(J/\psi \to \mu \mu)$
 - ✓ The B → Kµµ normalisation channel is used to determine $|V_{td} / V_{ts}|$ integrating over the form factors

$$\left|\frac{V_{td}}{V_{ts}}\right|^2 = \frac{\mathcal{BR}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{BR}(B^+ \to K^+ \mu^+ \mu^-)} \times \frac{\int \mathrm{dq}^2 \,\mathrm{F}_{\mathrm{K}}}{\int \mathrm{dq}^2 \,\mathrm{F}_{\pi}}$$

Branching fraction

• The branching fraction is found to be

LHCb-PAPER-2015-035

$$B \rightarrow \pi \mu \mu$$
Preliminary

 $\mathcal{BR}(B^+ \to \pi^+ \mu^+ \mu^-) = (1.83 \pm 0.24(stat) \pm 0.05(syst)) \times 10^{-8}$

• The differential branching fraction agrees with calculations \checkmark The discrepancy is related to how theory models the ρ/ω region

First measurement of the differential branching fraction and CP asymmetry of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ LHCb-PAPER-2015-035 **Branching** fraction $B \rightarrow \pi \mu \mu$

• The ratio of branching fraction BR($B \rightarrow \pi \mu \mu$) / BR($B \rightarrow K \mu \mu$) is

 $\frac{\mathcal{BR}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{BR}(B^+ \to K^+ \mu^+ \mu^-)} = \checkmark \begin{array}{cc} 0.038 \pm 0.009(stat) \pm 0.001(syst) & q^2 \in [1,6] \,\mathrm{GeV}^2/\mathrm{c}^4 \\ 0.037 \pm 0.008(stat) \pm 0.001(syst) & q^2 \in [15,22] \,\mathrm{GeV}^2/\mathrm{c}^4 \end{array}$

• The CKM matrix elements are extracted

$$\frac{|V_{td}|}{|V_{ts}|} = 0.24^{+0.05}_{-0.04} \qquad |V_{td}| = 7.2^{+0.9}_{-0.8} \times 10^{-3}$$
$$|V_{ts}| = 3.2 \pm 0.4 \times 10^{-3}$$

- \checkmark Errors are statistical plus systematics
- ✓ Largest error contribution from theory uncertainties

PRELIMINARY

 10^{-2}

First measurement of the differential branching fraction and CP asymmetry of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ LHCb-PAPER-2015-035 $B \rightarrow \pi \mu \mu$

CP asymmetry

• The CP asymmetry is evaluated for the first time in $b \rightarrow d$ transitions

$$A_{CP}^{\text{raw}} = \frac{N(B^- \to \pi^- \mu^+ \mu^-) - N(B^+ \to \pi^+ \mu^+ \mu^-)}{N(B^- \to \pi^- \mu^+ \mu^-) + N(B^+ \to \pi^+ \mu^+ \mu^-)}$$

LHCb Rare Decays — LHCP 2015 St Petersburg, Russia

• Adding the corrections for production (from $B \rightarrow K J/\psi$) and detection asymmetry (from $D^{*+} \rightarrow \pi^+ D^0$) we obtain

$$A_{CP} = -0.11 \pm 0.12(stat) \pm 0.01(syst)$$
 Preliminary

• The SM is being extensively tested at LHCb

 \checkmark many searches for new physics are ongoing

- Dark bosons in $B^0 \rightarrow K^* \chi (\rightarrow \mu \mu)$
- $B_s \rightarrow \mu \mu$ and $B_d \rightarrow \mu \mu$
- $B \rightarrow sll$
- $\Lambda_b \rightarrow \Lambda \mu \mu$
- R(K)
- LFV in $\tau \rightarrow \mu \mu \mu$
- 4th gen majorana neutrinos in $B \rightarrow X \mu \mu$
- ... and many more

[See talk BSM searches via rare decays in B physics on Thursday and the other LHCb talks]

- The SM is being extensively tested at LHCb
 ✓ many searches for new physics are ongoing
- Lots of interesting results from rare decays

 \checkmark the latest new rare decays results have been presented

Much more data in the near future
 ✓ stay tuned !

Thank you for your attention

backup slides

• LHCb is a forward detector $(2 < \eta < 5)$ designed to study *b* physics

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

- ✓ A total luminosity of ~ 3 fb⁻¹ has been recorded during LHC run I
- \checkmark Run II has started

[See LHCb talks from Monday]

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

arXiv:1506.08614

Selection

• Trigger

- \checkmark No muon p_T requirement in the trigger
- ✓ Triggered on D⁰ → Kπ with $p_T > 2 \text{ GeV}/c$ (tracks $p_T > 5 \text{ GeV}/c$)
- \checkmark The displaced D⁰ momentum must point toward a PV
- Offline selection
 - ✓ A soft charged pion is added to the D^0 to form the D^{*+} candidate
 - \checkmark The muon must be away from the PV and form a good $D^{*+}\mu^{\text{-}}$ vertex
 - ✓ The $D^{*+}\mu^{-}$ momentum must point toward the PV

LHCb Rare Decays — LHCP 2015 St Petersburg, Russia

Measurement of the ratio of branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

Systematics

Model uncertainties	Absolute size $(\times 10^{-2})$	
Simulated sample size	2.0	Expect
Misidentified μ template shape	1.6	for fut
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6	
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5	
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_\mu)$	0.5	
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4	Wills
Corrections to simulation	0.4	with
Combinatorial background shape	0.3	
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3	
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1	
Total model uncertainty	2.8	
Normalization uncertainties	Absolute size $(\times 10^{-2})$	
Simulated sample size	0.6	
Hardware trigger efficiency	0.6	
Particle identification efficiencies	0.3	
Form-factors	0.2	
$\mathcal{B}(\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1	
Total normalization uncertainty	0.9	
Total systematic uncertainty	3.0	

Expected to be reduced for future $R(D) + R(D^*)$

Will scale down with more data (Run2)

arXiv:1506.08614

 $B \rightarrow D^* \tau v$

Selection

- Trigger
 - \checkmark muon p_T requirements
 - ✓ tracks displaced and not pointing to the PV
- Offline selection
 - ✓ Narrow ϕ window
 - \checkmark Final state tracks must be compatible with the B_s vertex
 - ✓ Mass vetoes to reject partially reconstructed $B_s \rightarrow \phi J/\psi(\rightarrow \mu^+\mu^-)$, and misidentified $B^0 \rightarrow K^*\mu\mu$ and $\Lambda_b \rightarrow \Lambda (\rightarrow pK) \mu\mu$ backgrounds
- The analysis is performed in bins of dimuon invariant mass q²
 ✓ Charmonium background decays can be vetoed

 10^{3}

 10^{2}

$B \to \pi \mu \mu$

q² [GeV²/c⁴]

LHCb preliminary

5200

5400

5600

2000

1000

Selection

- Trigger
 - \checkmark muon p_T requirements
 - \checkmark tracks displaced and not pointing to the PV
 - ✓ Two+ of the final state particles must form a displaced vertex (SV)
- Offline selection
 - \checkmark Final state tracks must be compatible with the B_s vertex
 - \checkmark The B_s momentum must point to the PV
 - \checkmark MVA (BDT) to remove combinatorial
 - ✓ $\pi\mu\mu$ and Kµµ final states are distinguished after the selection by PID algorithms
 - ✓ Charmonium background decays are vetoed

 $q^2 \notin [8, 11] \text{ GeV}^2/c^4$ and $q^2 \notin [12.5, 15] \text{ GeV}^2/c^4$