LHCb CP violation

Mika Vesterinen,
Physikalisches Institut Heidelberg,
On behalf of the LHCb Collaboration

3rd Annual Large Hadron Collider Physics Conference, St. Petersburg 2nd September 2015

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

The CKM matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Only CP violating phase affecting quark sector?

Unitarity

$$V_{ud}V_{ub}^* + V_{cb}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Mika Vesterinen

3

The LHCb detector

Recent CPV results

sin2β with B _d →J/ΨK _s	3 fb ⁻¹	PRL 115, 031601 [LHCb-PAPER-2015-004]
ΔM_d with semileptonic B decays	3 fb ⁻¹	LHCb-CONF-2015-003 preliminary
Penguin study with B _s →J/ΨK*	3 fb ⁻¹	arXiv:1509.00400 [LHCb-PAPER-2015-034]
γ with B → Dhππ	3 fb ⁻¹	arXiv:1505.07044 [LHCb-PAPER-2015-020]
$ V_{ub} / V_{cb} $ with $\Lambda_b \rightarrow p\mu v$	2 fb ⁻¹	Nature Phys 10 (2015) 1038 [LHCb-PAPER-2015-013]

Loop processes

$sin 2\beta$ with $B_d \rightarrow J/\psi K_s$

Time dependent CP asymmetry

$$\frac{\Gamma(\bar{B}_{d}^{0}(t) \to f) - \Gamma(B_{d}^{0}(t) \to f)}{\Gamma(\bar{B}_{d}^{0}(t) \to f) + \Gamma(B_{d}^{0}(t) \to f)} = \frac{S\sin(\Delta m_{d}t) - C\cos(\Delta m_{d}t)}{\cosh\left(\frac{\Delta \Gamma_{d}t}{2}\right) + A_{\Delta\Gamma}\sinh\left(\frac{\Delta \Gamma_{d}t}{2}\right)}$$

$$\mathbf{S=sin2\beta}$$

$sin 2\beta$ with $B_d \rightarrow J/\psi K_s$

$\sin 2\beta$ with $B_d \rightarrow J/\psi K_s$

40k flavour tagged signal

Compared to previous analysis (PLB 721 24 (2013)), tagging efficiency, $\in D^2$ increased from 2.4% to 3%, with addition of SSπ algorithm.

$sin 2\beta$ with $B_d \rightarrow J/\psi K_s$

$$S = 0.731 \pm 0.035 \pm 0.020$$

$$C = -0.038 \pm 0.032 \pm 0.005$$

The best three

LHCb already competitive with the B-factories

Flavour tag as mixed or unmixed, and study the asymmetry

$$\frac{N^{\text{unmix}}(t) - N^{\text{mix}}(t)}{N^{\text{unmix}}(t) + N^{\text{mix}}(t)} = \cos(\Delta m_d t)$$

Correct decay time for average momentum loss to neutrino, as estimated from simulation

$$t_{\mathrm corr} = rac{L_{\mathrm B} \ M_{\mathrm B^0}_{PDG}}{p_{\mathrm D\mu}^{\mathrm{rec}}} \cdot \mathsf{K}$$

Mixing asymmetries, in four bins of mistag probability

 $\Delta m_d = 503.6 \pm 2.0_{\rm stat} \pm 1.3_{\rm syst} \, \rm ns^{-1}$

Most precise single measurement

ф_s status

Combination of $B_s \rightarrow J/\Psi KK, J/\Psi \pi \pi, D_s D_s$ gives:

$$\phi_s = -0.034 \pm 0.033 \text{ rad}$$

Penguin pollution

$$\phi_{s,i} = -2\beta_s + \phi_s^{\text{BSM}} + \Delta \phi_{s,i}^{J/\psi \phi}(a_i', \theta_i')$$

Penguin pollution

Study decay in which the tree diagram is CKM suppressed

$$\phi_{s,i} = -2\beta_s + \phi_s^{\text{BSM}} + \Delta \phi_{s,i}^{J/\psi\phi}(a_i', \theta_i')$$

Penguin study, $B_s \rightarrow J/\psi K^*$

Penguin study, $B_s \rightarrow J/\psi K^*$

Measure the branching fraction,

$$\mathcal{B}(B_s^0 \to J/\psi \, \overline{K}^{*0}) = \left(4.17 \pm 0.18(\text{stat}) \pm 0.26(\text{syst}) \pm 0.24(f_d/f_s)\right) \times 10^{-5}$$

Polarisation fractions,

$$f_0 = 0.497 \pm 0.025 \text{ (stat)} \pm 0.025 \text{ (syst)}$$

= 0.179 \pm 0.027 \text{ (stat)} \pm 0.013 \text{ (syst)}

And CP asymmetries,

$$A_0^{CP}(B_s^0 \to J/\psi \, \overline{K}^{*0}) = -0.048 \pm 0.057 \text{ (stat)} \pm 0.020 \text{ (syst)}$$

 $A_{\parallel}^{CP}(B_s^0 \to J/\psi \, \overline{K}^{*0}) = 0.171 \pm 0.152 \text{ (stat)} \pm 0.028 \text{ (syst)}$
 $A_{\perp}^{CP}(B_s^0 \to J/\psi \, \overline{K}^{*0}) = -0.049 \pm 0.096 \text{ (stat)} \pm 0.025 \text{ (syst)}$

Penguin study, $B_s \rightarrow J/\psi K^*$

Combination with LHCb study of SU(3) related $B_d \rightarrow J/\psi \rho$ (PLB 742 (2015) 38-49)

$$\Delta\phi_{s,0}^{J/\psi\phi} = 0.000_{-0.011}^{+0.009} \text{ (stat)} \quad ^{+0.004}_{-0.009} \text{ (syst) rad },$$

$$\Delta\phi_{s,\parallel}^{J/\psi\phi} = 0.001_{-0.014}^{+0.010} \text{ (stat)} \pm 0.008 \text{ (syst) rad },$$

$$\Delta\phi_{s,\perp}^{J/\psi\phi} = 0.003_{-0.014}^{+0.010} \text{ (stat)} \pm 0.008 \text{ (syst) rad }.$$

$$\phi_{s,i} = -2\beta_s + \phi_s^{\text{BSM}} + \Delta \phi_{s,i}^{J/\psi \phi}(a_i', \theta_i')$$

Penguin pollution to Φ_s is small

Tree level constraints

LHCb-CONF-2014-004

Measuring y

$$\gamma \equiv \arg(-V_{ud}V_{ub}^*/V_{cb}V_{cd}^*)$$

Interference between b→u and b→c decays

With other recoiling strange systems? (Gronau, PLB557 (2003) 198) e.g., $K^+\pi^-\pi^+$?

γ from B⁻ \rightarrow D⁰h⁻ π ⁺ π ⁻

Measure BRs and CP asymmetries in 16 different decay modes (8 x D 0 K $\pi\pi$, 8 x D 0 T $\pi\pi$)

Decay mode	B^- yield	B^+ yield
	$(N^f_{\mathrm{fit},X_d^-})$	$(N^f_{\mathrm{fit},X_d^+})$
$B^{\pm} \to DX_d^{\pm}, \ D \to K^-\pi^+$	36956 ± 214	37843 ± 219
$B^{\pm} \to DX_d^{\pm}, D \to K^+\pi^-$	161 ± 20	162 ± 20
	$(N^f_{\mathrm{fit},X_s^-})$	$(N^f_{\mathrm{fit},X_s^+})$
$B^{\pm} \rightarrow DX_s^{\pm}, D \rightarrow K^-\pi^+$ $B^{\pm} \rightarrow DX_s^{\pm}, D \rightarrow K^+\pi^-$	1234 ± 37	1226 ± 37
$B^{\pm} \to DX_s^{\pm}, \ D \to K^+\pi^-$	13.0 ± 5.3	6.6 ± 4.0

ADS modes

Quasi flavour specific D decays into K[±]π[∓]

 $(X_s = K^{\pm}\pi^{+}\pi^{-}, X_d = \pi^{\pm}\pi^{+}\pi^{-})$

GLW modes

D decays into CP-eigenstates K^+K^- and $\pi^+\pi^-$.

Decay mode	B^- yield	B^+ yield
	$(N^f_{\mathrm{fit},X_d^-})$	$(N^f_{\mathrm{fit},X_d^+})$
$B^{\pm} \to DX_d^{\pm}, D \to K^-\pi^+$	45213 ± 226	46488 ± 230
$B^{\pm} \rightarrow DX_d^{a}, D \rightarrow K^+K^-$	3899 ± 63	4084 ± 65
$B^{\pm} \to DX_d^{\pm}, \ D \to \pi^+\pi^-$	1669 ± 38	1739 ± 40
	$(N^f_{\mathrm{fit},X_s^-})$	$(N^f_{{ m fit},X^+_s})$
$B^{\pm} \to DX_s^{\pm}, \ D \to K^-\pi^+$	1699 ± 47	1744 ± 47
$B^{\pm} \rightarrow DX_s^{\pm}, D \rightarrow K^+K^-$	155 ± 14	171 ± 14
$B^{\pm} \to DX_s^{\pm}, \ D \to \pi^+\pi^-$	59 ± 9	70 ± 9

γ from B⁻ \rightarrow D⁰h⁻ π ⁺ π ⁻

Evidence (3.6 σ) for the ADS decay, $B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}]_{D} K^{\pm}\pi^{\mp}\pi^{\pm}$

γ from B⁻ \rightarrow D⁰h⁻ π ⁺ π ⁻

First y measurement with these modes

|Vub| landscape

Long standing inclusive versus exclusive puzzle

Measurements with other b-hadron species needed

LHCb is a b-baryon factory ($\Lambda_b/B_{u,d} \sim 50\%$)

LHCb is a b-baryon factory ($\Lambda_b/B_{u,d} \sim 50\%$)

The corrected mass

$$m_{\rm corr} = \sqrt{m^2 + p_\perp^2 + p_\perp}$$

LHCb is a b-baryon factory ($\Lambda_b/B_{u,d} \sim 50\%$)

Measure the ratio of branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0 \to p\mu\nu)_{q^2 > 15 \text{ GeV}/c^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu\nu)_{q^2 > 7 \text{ GeV}/c^2}} = (1.00 \pm 0.04 \pm 0.08) \times 10^{-2}$$

Measure the ratio of branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0\to\rho\mu\nu)_{q^2>15~\mathrm{GeV}/c^2}}{\mathcal{B}(\Lambda_b^0\to\Lambda_c^+\mu\nu)_{q^2>7~\mathrm{GeV}/c^2}} = \frac{|V_{ub}|^2}{|V_{cb}|^2}\,R_{\mathrm{FF}}$$
 Form Factors from LQCD
$$0.68\,\pm\,0.07$$

Detmold, Lehner, Meinel, PRD 92, 034503 (2015)

Resulting in

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004_{\text{exp}} \pm 0.004_{R_{FF}}$$

Using exclusive $|V_{cb}|$ average:

The |V_{ub}| puzzle lives on...

Conclusions

- Successful LHCb Run-I
- The data seem to be compatible with the CKM picture of CPV, but |V_{ub}| puzzle remains.
- Much more to come from LHCb in Run-II and beyond.

Backup slides

What LHCb really measures though is $|V_{ub}|/|V_{cb}|$, while the B-factories measure $|V_{ub}|$ and $|V_{cb}|$ separately

Flavour tagging at LHCb

New OS charm tagger

[LHCb, submitted to J. Instr., arXiv:1507.07892]

Run-I

