

Top Quark Production at the LHC

Abideh Jafari UCLouvain and FNRS for the CMS & ATLAS collaborations

3rd Annual LHC Physics Conference 31st Aug. – 5th Sept. St. Petersburg, Russia

The Top Quark

- A testing ground to validate SM or see hints for new physics
- Diversity of particles in final state \rightarrow a commissioning tool for early data
- Large mass, short life time \rightarrow bare quark properties
- Validate Monte-Carlo generators ...
- Background for searches ...

The Top Quark Factory

Rate \geq 20 times larger than Tevatron

The Top Quark Factory

The Top Quark Factory

2

≥ 3

N_{b-tag}

And the recent observation of the top quark in forward regions at LHCb

≥3

b jet multiplicity

0

Events

The single-Top Quark Factory

The single-Top Quark Factory

PAIR PRODUCTION

Top pair cross section and final states

E _{COM} LHC	$\sigma_{tt} (m_t = 172.5 \text{ GeV})^1$	^g eccepter ⁱ ^q			
7 TeV	177.31 + 10.1 - 10.8				
8 TeV	252.89 +13.3 -14.5	• high rate large background			
13 TeV	831.76 + 40.2 - 45.6	 Ingh rate, large background Used with more data 			
q q q q	b b b b c c q' q' q' d	ay $t + \tau$ 1% $t + \mu$ 2% $t + \mu$ 5% $t + \mu$ 1% $t + \mu$ 5% $t + \mu$ 5%			
	Low rate but clean Early measurement	 Moderate rate, moderate background Early differential measurement 			

Inclusive

Differential

- Global picture
- Establish and validate the analysis strategy
- Sensitive to overall excess

Top pair cross section

- Residual picture
- Detailed model validation
- Sensitive to residual BSM effects

Fiducial

• Within the detector acceptance

- Algorithms similar to detector level
- Less dependence to extrapolation effects

Experiment

Fiducial

• Within the detector acceptance

Top pair

cross

section

- Algorithms similar to detector level
- Less dependence to extrapolation effects

Experiment

• Suitable to compare with recent QCD calculations

Full phase space

Theory

- Total recorded luminosity in Run I ~ 20 (8 TeV) + ~ 5 (7 TeV) fb⁻¹
- The run I data is still being exploited to achieve even better precision and to look into differential distributions and properties

LHC RUN I

- Total recorded luminosity in Run I ~ 20 (8 TeV) + ~ 5 (7 TeV) fb⁻¹
- The run I data is still being exploited to achieve even better precision and to look into differential distributions and properties

INCLUSIVE

Top pair cross section *l+jets* 8 TeV

Selection:

- Exactly one muon or electron
- At least 3 jets
- At least 1 b-tagged

Signal extraction: A template fit to the likelihood model, constructed using the most discriminative variables

Top pair cross section *l*+jets 8 TeV

$$\sigma_{t\bar{t}}^{lj} = 258 \pm 1(stat.) + 22(syst.) \pm 8(lumi.) \pm 4(beam) pb$$

• Dominant systematics: PDF

•
$$\frac{\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}}{\Delta m_t} = -1.1 \% GeV^{-1}$$

$$m_t = 172.5 \text{ GeV}$$

Fiducial: particle level reconstruction/selection close to detector level

$$\sigma_{t\bar{t}}^{lj} = 22.8 \pm 0.1(stat.) + 1.9 (syst.) \pm 0.7 (lumi.) \pm 0.4 (beam) pb$$

Top pair cross section eµ "7+8" TeV

- *Multi-differential* measurement in categories
- b-tag multiplicity used in signal extraction
- Additional non-tagged jets, p_T of softest jets:
 - Control extra radiations
- A simultaneous likelihood fit with systematics as nuisance parameters

Top pair cross section eµ "7+8" TeV

Fiducial

$$\sigma_{t\bar{t}}^{fid}(7 TeV) = 3.05 \pm 0.04(stat.) + 0.08(syst.) \pm 0.07(lumi.) pb - 0.07$$
 $\sigma_{t\bar{t}}^{fid}(8 TeV) = 4.24 \pm 0.02(stat.) + 0.11(syst.) \pm 0.11(lumi.) pb - 0.10$

T	OP-13-004	7 TeV (pb)	8 TeV (pb)	R _{tt}	
		(scale \pm			
moc	Theory	$177.3^{+4.7}_{-6.0} \pm 7.1$	$252.9 \frac{+6.7}{-8.6} \pm 11.7$	1.43 ± 0.01	
		182.9 ± 7.1	242.4 ± 10.3	1.33 ± 0.06	
		174.5 ± 6.2	245.6 ± 9.3	1.41 ± 0.06	

¹Eur.Phys.J. C74 (2014) 3109

Top pair cross section eµ "7+8" TeV

 $\sigma_{t\bar{t}}^{fid}(7 \, TeV) = 3.05 \pm 0.04 \, (stat.)$ + 0.08 (syst.) \pm 0.07 (lumi.) pb - 0.07

DY, Lepton

 $\sigma_{t\bar{t}}^{fid}(8TeV) = 4.24 \pm 0.02(stat.) + 0.11(syst.) \pm 0.11(lumi.) pb - 0.10$

TOP-13-004				
		7 TeV (pb) 8 TeV (pb)		$\mathbf{R}_{t\bar{t}}$
	Theory	$177.3 + 4.7 \pm 7.1 - 6.0$	$252.9 + 6.7 \pm 11.7 - 8.6$	1.43 ± 0.01
noi	AT LAS	182 <mark>3.5%</mark> 1	242. <mark>3.9%</mark> 3	1.33 ± 0.06
		174 <mark>3.5%</mark> 2	245 <mark>3.8%</mark> 3	1.41 ± 0.06

¹Eur.Phys.J. C74 (2014) 3109

ttb(b) cross section 8 TeV

arXiv:1508.06868

- Investigating NLO QCD
- Background to ttH, ttZ, ...

- Based on the b-tag discriminator of the 3rd and 4th jets
- Ratio $\sigma_{ttbb}^{\dagger}/\sigma_{ttjj}^{\dagger}$ measured, too

DIFFERENTIAL

Differential cross section

Top quark reconstruction

Data

tī Signal

tt Other

Single t

W+Jets

Z / γ^{*}+Jets

Diboson

______ tī+Z/W/γ

16

14E

12

10Ē

8

6

1.4

1.2

0.8

0.6

ō 50

e/u + Jets

Top quarks / 20 GeV

N_{Data}

Compare to theory

Compare to theory

Differential cross section

Object reconstruction

Compare to theory

- Compare to *particle level*
- *Reconstructed* such to resemble detector level objects
- *Selected* similarly to detector level objects
- Example:
- Jets are clustered from stable particles with the same jet algorithm as the detector level

Differential cross section

Differential cross section *ll*, *l*+jets 8 TeV

Di-lepton:

- Exactly two opposite sign leptons
- Not compatible with Z bososn
- At least 2 jets, at least 1 *b-tag*

Single lepton:

- Exactly one electron or muon
- At least 4 jets, at least 2 *b-tag*, at least 2 *non-tagged*

Differential cross section *ll*, *l*+jets 8 TeV

Differential cross section *l+jet* 7 TeV

Differential cross section *l+jet* 7 TeV

Rapidity of leptonic top

JHEP 06(2015)100

Differential cross section *l+jets* 7 TeV

The p_T of the top quark

Softer spectrum in data than simulation

Top quark is treated as a single jet! Identified with jet substructure techniques ...

BOOSTED REGIMES

Differential σ_{tt} for high p_T tops at 8 TeV

Fiducial at particle level

TOP-14-012

 $\sigma_{t\bar{t}} = 1.28 \pm 0.09 (stat.+syst.) \pm 0.1 (PDF) \pm 0.09 (Q^2) \pm 0.03 (lumi.) pb$

Fiducial at parton level (before decay after QCD radiations)

 $\sigma_{t\bar{t}} = 1.44 \pm 0.10(stat.+syst.) \pm 0.13(PDF) \pm 0.15(Q^2) \pm 0.04(lumi.)pb$

PowHeg predicts 1.49 (1.67) pb at particle (parton) level
About 14% higher, corresponding to 1.3σ (1.0σ)

Differential σ_{tt} for high p_T tops at 8 TeV

Still PowHeg shows trend to be harder than data (MadGraph ok)

Differential σ_{tt} for high p_T tops at 8 TeV

Similar observation in the *first* measurement by ATLAS

ATLAS-CONF-2014-057

- The overestimation exists in almost all generators
- Increases with top p_{T}

LHC RUN II

Top pair candidate eµ 13 TeV Δ EXPERIMENT Jet Run: 267638 0 Event: 193690558 Muon 2015-06-13 23:52:26 CEST Jet Electron

Top pair candidate eµ 13 TeV

Top distributions with first 13 TeV collisions

CMS DP-2015/019

ATL-PHYS-PUB-2015-017

ATLAS-CONF-2015-033

Fir cross section eµ 78 pb⁻¹ 13 TeV
In-situ measurement of
$$\sigma_{tt}$$
 and b-jet finding efficiency, ε_{b}

$$N_{1b} = L \sigma_{tt} \epsilon_{e\mu} 2 \epsilon_b (1 - C_b \epsilon_b) + N_{1b}^{bkg} \qquad N_{2b} = L \sigma_{tt} \epsilon_{e\mu} C_b \epsilon_b^2 + N_{2b}^{bkg}$$

In-situ measurement of
$$\sigma_{tt}$$
 and b-jet finding efficiency, ϵ_{tt}

$$N_{1b} = L \sigma_{tt} \epsilon_{ey} 2 \epsilon_b (1 - C_b \epsilon_b) + N_{1b}^{bkg}$$

From simulation

b-tagging correlation between top and anti-top and mis-tagged jets • DY: taken from

 $N_{2b} = L \sigma_{tt} \epsilon_{e\mu} C_b \epsilon_b^2 +$

- simulation, validated in
- data (lack of statistics)
- Non-prompts: from
- same-sign data, scaled
- by MC ratio of OS/SS

$\sigma_{t\bar{t}} = 825 \pm 49(stat.) \pm 60(syst.) \pm 83(lumi.)pb$

- Hadronization in signal: Herwig++ vs. Pythia6 (default)
- Electron identification

 $m_t = 172.5 \text{ GeV}_{46}$

- An electron-muon trigger for online selection
- Reject heavy flavor resonances with $m_{e\mu} < 20 \text{ GeV}$
- At least two jets and no b-tagging requirement

A A A

CMS

- An electron-muon trigger for online selection
- Reject heavy flavor resonances with $m_{eu} < 20 \text{ GeV}$
- At least two jets and no b-tagging requirement

- **DY**: $R_{out/in}$ method in ee/µµ to correct the whole range using the Z-mass window. MC eµ is corrected with overall Data/MC SF of (1.06±0.17)
- Non-prompt: from same-sign data, scaled by MC scale of OS/SS

TOP-15-003

$$A \times \epsilon_{sel} \times Br(t \rightarrow e \mu)$$

=(0.60±0.04)%

	Number of events
Source	$e^{\pm}\mu^{\mp}$
Drell–Yan	6.4 ± 1.2
Non-W/Z leptons	8.5 ± 4.3
Single top quark	10.6 ± 3.4
VV (V = W or Z)	2.6 ± 0.9
Total background	28.1 ± 5.7
$t\bar{t}$ dilepton signal	206.7 ± 16.0
Data	220

NIS IN

 $\sigma_{t\bar{t}} = 772 \pm 60(stat.) \pm 62(syst.) \pm 93(lumi.)pb$

• A counting experiment in the selected sample

Compact M		Number of events	
	Source	$e^{\pm}\mu^{\mp}$	
	Drell–Yan	6.4 ± 1.2	
TOP-15-003	Non-W/Z leptons	8.5 ± 4.3	
	Single top quark	10.6 ± 3.4	$m_{t} \approx 12$
$\Lambda \vee c \vee Br(t \rightarrow cu)$	VV (V = W or Z)	2.6 ± 0.9	1/2.5
$A \land e_{sel} \land DI (l \lor e \mu)$	Total background	28.1 ± 5.7	Gev
$=(0.60\pm0.04)\%$	$t\bar{t}$ dilepton signal	206.7 ± 16.0	
	Data	220	

 $\sigma_{t\bar{t}} = 772 \pm 60(stat.) \pm 62(syst.) \pm 93(lumi.) pb$

- Dominant systematics are lepton trigger and identification.
- Top mass dependence: small! 0.7% reduction on $m_t = 173.34 \text{ GeV}^{-1}$
- Cross section in the **fiducial** volume:

 $\sigma_{t\bar{t}} = 12.9 \pm 1.0(stat.) \pm 1.1(syst.) \pm 1.5(lumi.)pb$

Summary of eµ inclusive analyses at 13 TeV

Uncertainties on the measurements are comparable with that of theory

Differential cross section ll 13 TeV

Top quark properties and jet multiplicity All lepton flavors

TOP-15-010

CMS

Differential cross section *ll*, 13 TeV

Differential cross section *l+jets* 13 TeV

Differential cross section *l+jets* 13 TeV

Backgrounds from simulation

 $\sigma_{t\bar{t}} = 836 \pm 27(stat.) \pm 84(syst.) \pm 100(lumi.)pb$

b-tagging $\sim 5\%$ **TOP-15-005** 42 pb⁻¹ (13 TeV) 42 pb⁻¹ (13 TeV) 9 <u>×10</u>⁻³ <u>×</u>10^{−3} $rac{1}{\sigma} rac{d\sigma}{dp_T(t_h)} [GeV^{-1}]$ $\frac{d\sigma}{dp_{T}(t_{j})}$ [GeV⁻¹] l+jets CMS CMS l+jets 9 Preliminarv Preliminarv 📥 data 🔶 data 8 8 sys ⊕ stat sys ⊕ stat stat stat Powheg Pythia8 Powheg Herwig++ aMC@NLO Powheg Pythia8 Powheg Herwig++ aMC@NLO -10 Madgraph Madgraph Hadronic Leptonic theory data theory 4 data 0.8 0.8 0.6 0.6 50 350 400 400 450 50 p_(t_L) [GeV] 50 350 450 100 250 300 100 200 250 300 400 150 200 150 500 0 0 p_(t) [ĞeV] CMS Generally good agreement between data and simulation 55

Summary

- The LHC experiments studied the very first top quarks from pp collisions at 13 TeV
- The production rate of tt is measured inclusively and in bins of top quark properties together with lepton and jets
- More precise results are obtained using the full LHC data set in Run I
 - Boosted regimes are explored thanks to the large statistics
- It's only the beginning with the 13 TeV data
 - More fun and excitement are underway
 - Stay tuned ...

St Petersburg artists inspired by top quark!

© Martini Art Love event

THANK YOU!

BACKUP

Top pair cross section *l+jets* 8 TeV

Background:

- QCD: matrix method
- Rest from simulation

PRD91,112013(2015)

TOP-13-004

• Systematics from pseudo experiments

Top pair cross section eµ "7+8" TeV

Background:

- Shape from MC
- Normalization in the fit

Differential cross section *ll*, 13 TeV

The total systematic uncertainty on the normalized differential cross sections is typically around 8.5%. This value is calculated as the median of the distribution of the total systematic uncertainties over all bins of all measured observables. Typical values for the dominant contributions to the systematic uncertainty for rapidity observables (all other observables) are: generator, with 3.4% (1.6%); hadronization and parton showering, with 2.3% (2.9%); PDF, with 1.5% (0.5%); JES, with 1.2% (1.2%); JER, with 0.7% (0.8%); b-tagging, with 0.6% (0.9%).

The total uncertainty on the measurement is typically 19.2%, dominated by the statistical uncertainty.

ttb(b) cross section 8 TeV

ATLAS-CONF-2015-247

<u>4</u> 5	$\sigma_{_{ttb}}^{\mathrm{fid}}$	$\sigma_{_{ttb}}^{\mathrm{fid}}$	$\sigma_{_{ttbb}}^{\mathrm{fid}}$	$\sigma_{_{ttbb}}^{\mathrm{fid}}$	R _{ttbb}
	Lepton-plus-jets	ttb eµ	Cut-based	Fit-based	Fit-based
Source	uncertainty uncertaint		uncertainty	uncertainty	uncertainty
	(%)	(%)	(%)	(%)	(%)
Total detector	+17.5 -14.4	+11.6 -8.0	±14.5	+11.9 -13.1	+10.9 -12.5
Jet (combined)	+3.9 -2.7	+10.1 -6.1	±5.5	+6.0 -8.5	+8.7 -10.7
Lepton	±0.7	+1.0 -0.5	±2.0	+2.4 -2.7	+0.8 -1.6
b-tagging effect on b -jets	+4.4 - 4.0	+3.6 -3.1	±12.9	+9.4 -9.0	+6.0 - 5.8
b-tagging effect on c -jets	+16.2 -13.4	+4.0 -3.6	±1.7	± 1.4	+1.2 -1.3
<i>b</i> -tagging effect on light jets	+3.1 -2.0	+1.9 -2.0	±4.3	+3.3 -2.9	+2.2 -1.9
Total <i>tī</i> modelling	+13.1 -13.7	+23.8 -16.1	±23.8	±21.7	±16.1
Generator	+1.1 -1.4	+23.3 -15.1	±16.9	±17.4	±12.4
Scale choice	±4.3	+1.1 -2.7	±14.2	±9.5	±6.0
Shower/hadronisation	+11.4 -12.1	+3.0 -3.4	±8.2	±8.7	±7.1
PDF	+4.7 -4.5	±3.3	±3.3	±0.8	±4.1
Removing/doubling $t\bar{t}V$ and $t\bar{t}H$	±0.4	+1.1 -0.9	±1.5	+3.1 -2.7	+3.0 - 2.6
Other backgrounds	±0.8	+0.9 -0.8	±1.6	+3.5 -3.3	±2.5
MC sample size	< 1	< 1	±9.6	±7.4	±7.4
Luminosity	±2.8	±2.8	±3.2	±2.9	±0.1
Total systematic uncertainty	+25.5 -19.2	+30.5 - 19.9	±29.5	+26.4 -26.9	+21.1 -21.9
Statistical uncertainty	±7.1	+19.2 -17.9	±18.4	±24.6	±25.2
Total uncertainty	+26.5 -20.5	+36.0 -26.8	±35.2	+36.1 -36.4	+32.9 -33.4

Changing templates and redo the fit

Differential cross section *ll*, *l*+jets 8 TeV

Background

arXiv:1505.04480

• DY in $\ell\ell$ from data

Systematics

Relative systematic uncertainty (%)						
Source	Lepton and b jet observables		Top quark and tt observables			
	ℓ+jets dileptons		ℓ +jets	dileptons		
Trigger eff. & lepton selec.	0.1	0.1	0.1	0.1		
Jet energy scale	2.3	0.4	1.6	0.8		
Jet energy resolution	0.4	0.2	0.5	0.3		
Background (Z+jets)		0.2		0.1		
Background (all other)	0.9	0.4	0.7	0.4		
b tagging	0.7	0.1	0.6	0.2		
Kinematic reconstruction		< 0.1		< 0.1		
Pileup	0.2	0.1	0.3	0.1		
Fact./renorm. scale	1.1	0.7	1.8	1.2		
ME-PS threshold	0.8	0.5	1.3	0.8		
Hadronization	2.7	1.4	1.9	1.1		
Top quark mass	1.5	0.6	1.0	0.7		
PDF choice	0.1	0.2	0.1	0.5		

Changing source and redo the calculation

Differential cross section *l+jet* 7 TeV

JHEP 06(2015)100

Selection

- 1 lepton +>= 4jets +>= 2b
 Background
- Dilepton tt: simulation, corrected for acceptance, etc.
- W+jets
 - normalization from charge asymmetry,
 - HF from MC

Systematics

- Measurements are currently limited by the systematic uncertainty
- The main components
 - b-tagging uncertainty,
 - Jet energy measurement
 - Modelling uncertainty of the initial and final state parton showers