Inclusive searches for squarks and gluinos with the ATLAS experiment at LHC

J. Maurer, on behalf of the ATLAS Collaboration

IFIN-HH Bucharest

LHCP 2015, St Petersburg, SUSY session

< ロ > < 同 > < 三 > < 三

Overview

• Scenarios : $pp \rightarrow \tilde{q}\tilde{q}, \tilde{g}\tilde{g}, \tilde{q}\tilde{g}$ with *R*-parity conserving + prompt decays

• Results released this Summer by the ATLAS SUSY group:

- Summary of run-1 analyses [1507.05525]: combination of published analyses exclusion limits for multiple scenarios, new signal regions, new interpretations, new analysis (0 lepton razor)...
- Photon + X searches [1507.05493] : analysis of full 2012 dataset

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Typical search strategies

Discriminant variables

- Build Signal Regions (SRs) by using missing transverse momentum E_T^{miss} , number of jets, effective mass $m_{\text{eff}} = \sum_{i,\ell} p_T + E_T^{\text{miss}}$, transverse masse m_T
- Exclusions limits set from best expected, or statistical combination of orthogonal SRs

Background estimate

- Control regions (CRs) for W, Z or tt
 processes to normalize MC samples near
 the Signal Regions
- Data-driven methods for backgrounds less accurately described by the simulations
- Pure MC prediction for rare processes, with theoretical uncertainties
- Validation Regions (VRs) to check the background estimates close to the SRs

(日) (同) (三) (三)

Data-driven background estimates

Jet smearing

QCD template

ABCD method

Rely on two uncorrelated discriminant variables to define orthogonal background-rich regions $\rightarrow \tau + X$, $\gamma + X$ searches for multijets bkg

Universality of EW interactions

Control regions for $W \to \tau_h \nu$ or $Z \to \nu \nu$ use $W \to \ell \nu$, $Z \to \ell \ell$ or $Z \leftrightarrow \gamma$

(日) (同) (三) (三)

Matrix method, fake factor

Direct squark/gluino decays

0 lepton + 2-6 jets + E_T^{miss} [1405.7875]

- 17 SRs split by jet multiplicity and variable tightness of *m*_{eff} and *E*_T^{miss} "significance" cuts
- 2 of them require $W \rightarrow qq$ candidates (resolved or not)
- background: $Z \rightarrow \nu \nu$, $W/t\bar{t} \rightarrow \tau \nu$ or missed e/μ

Reinterpretation of monojet+ E_T^{miss} [1407.0608]

• small ΔM : 3 SRs selecting hard ISR jet + high E_T^{miss}

One-step decays and combination

1 lepton $+ \ge 3-7$ jets $+ E_T^{\text{miss}}$ [1501.03555]

- 7 orthogonal SRs split into hard/soft leptons and #jets, only search (with soft μμ) down to p^{μ(e)}_μ > 6(7) GeV
- combined fit of $m_{\rm eff}$, $E_T^{\rm miss}$ or $E_T^{\rm miss}/m_{\rm eff}$ distributions
- bkg: $t\bar{t}$ and W+jets, fake leptons at low p_T
- orthogonal to 0L or 2L \Rightarrow combined where useful \rightarrow single likelihood, correlated uncertainties

Image: A math a math

Longer decay chains, general-purpose searches

0 lepton $+ \ge$ 7-10 jets [1308.1841]

- 13 SRs split by central jets multiplicity
- 6 SRs identifying boosted heavy particles hadronic decays with ∑ M{fat jet}

• bkg: QCD, $t\bar{t} \rightarrow \ell \nu qq$

Same-sign / 3 leptons + jets [1404.2500]

- 5 SRs \sim orthogonal, combined $m_{\rm eff}$ fit
- low bkg : $t\bar{t}V$, VV, non-prompt leptons

- Signal regions w/wo b-tagged jets
- Moderate E_T^{miss} requirements

< ロ > < 同 > < 三 > < 三

Beyond simple selections : dilepton lineshape

Same-flavor dilepton searches [1503.03290]

- On-Z: targets $\tilde{\chi} \rightarrow Z \tilde{\chi}_1^0$ decays (or $\rightarrow Z \tilde{G}$) $\rightarrow \geq 2$ jets, $E_T^{\text{miss}} > 225$, $H_T > 600$ GeV
- Off-Z: kinematic edge of \$\tilde{\chi}\$ → \$\ell^+ ℓ^- \$\tilde{\chi}_1^0\$ through Z* or \$\tilde{\ell}\$ → 4 SRs with \$E_T^{miss}\$ > 200 and ≥ 2/4 jets, w/wo b-tag, + 1 looser SR to check CMS observations
- bkg: flavor-symmetric (tt
 t, VV) estimated from eμ channel, Z/γ*+jets

J. Maurer (IFIN-HH)

Beyond simple selections : razor variables, m_{CT}

Razor: 0 lepton [1507.05525], 2 leptons [1501.03555]

- Build 2 mega-jets from visible reconstructed objects
- *M'_R* and *M^R_T* estimate mass scale from topology-based assumptions, or transverse info (including *E^{miss}_T*)
- Ratio R gauges consistency

Direct scharm production [1501.01325]

- Two leading jets c-tagged
- Cuts on E^{miss}_T and m_{cc}
- Boost-corrected m_{CT} , cut > $t\bar{t}$ end-point

J. Maurer (IFIN-HH)

Third generation-mediated decays

- 0L: 6 SRs with \geq 4(7) jets for $\tilde{b}(\tilde{t})$ -mediated decays \rightarrow various cuts tightnesses on E_T^{miss} and m_{eff}
- 1L: 3 SRs with \geq 6 jets, softer kinematic cuts
- bkg: mostly $t\bar{t}$ with mis-identified *b*-jet, $t\bar{t} + b\bar{b}$

Complementary searches [1507.05525]

For decays with less b quarks: $\tilde{t} \to c \tilde{\chi}_1^0$, $\tilde{t} \to bs$ (RPV)

added 4/5-body decays for $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ \rightarrow probing experimental sensitivity to more compressed mass spectra

Inclusive searches for squarks and gluinos

Light(er) staus

Searches with tau(s) [1407.0603]

- GMSB scenarios with $\tilde{\tau}$ NLSP; + new reinterpretations
- Split into $1\tau + 0\ell$, $2\tau + 0\ell$ and $\geq 1\tau + 1\ell$ channels
- 10 SRs with \geq 2-4 jets, $E_T^{\rm miss}$, $m_{\rm eff}$, H_T^{2j} , $m_T^{ au 1} + m_T^{ au 2}$ cuts
- bkg: V+jets, tt

 CR for each process and real/fake τ contribution; data-driven QCD (jet smearing, ABCD)

Gauge-mediated SUSY : photon signatures

Searches with photon+X ($X = \gamma, j, b$) [1507.05493]

- GGM scenarios with bino- or higgsino-like $\tilde{\chi}^0_1$ NLSP
- 6 SRs for strong production : cuts on E_T^{miss} , m_{eff} or H_T + $m_{bb} \& m_T^{\gamma}$ for γb , jet momentum balance R_T^4 for γj
- bkg: QCD γγ/γj, V/tt̄ + γ, fake γ from e or jet
 → various estimation methods depending on the channel

Phenomenological models

Combined limits also set on several phenomenological models [1507.05525]

Toward the analysis of the 13 TeV data

Conclusion

[ATL-PHYS-PUB-2015-005]

Image: A match the second s

- Summary of run-1 searches: various complementary topologies analyzed, various signal scenarios probed : no evidence for Supersymmetry
- Starting a new chapter at 13 TeV: soon access to yet unexplored regions!

Additional material

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Signal scenarios and complementarity of the searches

	(0+1)-lepton	MONOJ	0L	MULTJ	0LRaz	1L(S,H)	1L(H)	2L(S)	2LRaz	2L-offZ	SS/3L	TAU	0/1L3B
Model	combination												
pMSSM			~										
mSUGRA/CMSSM	1			1			~				1	~	~
mSUGRA/CMSSM with bRPV			~	1		~	~				1	~	
mGMSB											1	~	
nGM			1			~						1	
NUHMG	4												
mUED			1			~		~	1		1		
$\tilde{q}\tilde{q}$ production, $\tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$		1	1		1								
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qq\tilde{\chi}_1^0$			1										
$\tilde{q}\tilde{g}$ production, $\tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$, $\tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}$			~										
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow g\tilde{\chi}_1^0$			1										
$\tilde{q}\tilde{q}$ production, $\tilde{q} \rightarrow qW\tilde{\chi}_1^0$	4												
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qqW\tilde{\chi}_{1}^{0}$	1			1							1		
$\tilde{q}\tilde{q}$ production, $\tilde{q} \rightarrow q(\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_1^0$	4								1	1	1		
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qq(\ell \ell / \ell \nu / \nu \nu)\tilde{\chi}_1^0$	4			~		~			1	~	1		
$\tilde{q}\tilde{q}$ production, $\tilde{q} \rightarrow q(\tau \tau / \tau \nu / \nu \nu)\tilde{\chi}_{1}^{0}$												~	
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qq(\tau \tau / \tau \nu / \nu \nu)\tilde{\chi}_{1}^{0}$												~	
$\tilde{q}\tilde{q}$ production, $\tilde{q} \rightarrow qWZ\tilde{\chi}_1^0$			~								1		
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	1			~							1		
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}$ (off-shell stop)				1		~					1		4
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow \tilde{t}_1 t$, $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$				1									~
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow \tilde{t}_1 t$, $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm}$											1		~
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow \tilde{t}_1 t$, $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$	4										1		
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow \tilde{t}_1 t$, $\tilde{t}_1 \rightarrow bs$				~							1		
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow tb\tilde{\chi}_{1}^{0}$													1
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ (off-shell sbottom)			~										~
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow \tilde{b}_1 b$, $\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$													4

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Signal regions for the zero lepton + 2-6 jets search

	Class 1 and a				Demolecuent				Si	gnal reg	ion					
Requirement	-			Signal r	region		Requirement	4jl-	4jl	4jm	4jt	5j	6jl	6jm	6jt	6jt+
	2j1	2jm	2jt	2jW	3j	4jW										
Emiss [CeV] >		160			$E_T^{mass} [GeV] >$	160										
DT [Gev] >	100			$p_T^{\text{jet}_1}$ [GeV] >	130											
p_T^{perf} [GeV] >	130			$p_{eq}^{et_2}[C_eV] >$	60											
$p_{T}^{\text{jet}_{2}}$ [GeV] >	60			p _T [GeV] >	80											
jeta (CLAV) >					60	40	p_T^{per3} [GeV] >					60				
p _T [Gev] >	-		-		60 40		$p_{m}^{\text{jet}_{4}}$ [GeV] >					60				
$p_T^{\text{jet}_4}$ [GeV] >			-			40	ista (c. m)	-				· · ·		00		
$\Delta \phi(\text{iet.}, \dots, E^{\text{miss}}) \rightarrow \infty >$				0.4	L		$p_T \circ [GeV] >$			-				60		
=+0=1,2,(3),=+ /min >							$p_T^{\text{jet}_6}$ [GeV] >			-					60	
$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$			-	-		0.2	Add(int Emiss)					0.4				
W candidates		-		$2(W \rightarrow j)$	-	$(W \rightarrow j) + (W \rightarrow jj)$	$\Delta \phi(jet_{1,2,(3)}, E_T) min >$	-				0.4				
$E_{\rm miss} / / \overline{H_{\rm cov}} [C_{\rm o} V1/2] >$	•	1	e.				$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$					0.2				
E _T /VIT [Gev /] >	0		.5			-	$E_{T}^{miss}/\sqrt{H_{T}}$ [GeV ^{1/2}] >		10				-			
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\gamma_{\rm J}} >$	1			0.25	0.3	0.35	Emiss (, N1			0.4	0.07	1	0.0		0.07	0.15
m_{α}^{incl} [GeV] >	800	1200	1600	1800	2200	1100	$E_{T}/m_{eff} >$		-	0.4	0.25		0.2		0.25	0.15
···en (····) >	1.00	1 - 200		1000			m_{eff}^{incl} [GeV] >	700	1000	1300	2200	1200	900	1200	1500	1700

Signal region name	$0L_4jt+$	$0L_{-}5jt$
Number of jets \geq	4	5
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{N_{\rm j}} \ge$	0.30	0.15
$m_{\rm eff}^{\rm incl} [{\rm GeV}] \ge$	2200	1900

Image: A math a math

J. Maurer (IFIN-HH)

September 1, 2015 3 / 11

Signal regions for the 1-2 leptons + jets searches

		Signal region										
Requirement	Single-	bin (binr	ned) soft s	ingle-leptor	1	Soft dimuon						
	3-jet	5-	-jet	3-jet inch	ısive	2-jet						
N_{ℓ}	1		2 muons									
p_{T}^{ℓ} [GeV]	[7,2	[5] for elec	tron, [6,25]	for muon		[6,25]						
Lepton veto	No addition:	al electron	or muon w	ith $p_{\rm T} > 7$ G	eV or	6 GeV, respectively						
$m_{\mu\mu}$ [GeV]	-		-	-		[15,60]						
N _{jet}	[3,4]	2	≥ 5	≥ 3		≥ 2						
$p_{\rm T}$ ^{jet} [GeV] >	180, 25, 25	180, 25,	25, 25, 25	130, 100,	25	80, 25						
N_{b-jet}	-		-	0		0						
$E_{\rm T}^{\rm miss}$ [GeV] >	400	3	300		1	180						
$m_{\rm T} \ [{\rm GeV}] >$		100		120		40						
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm incl} >$		0.3(0.1)		0.1		0.3						
$\Delta R_{\min}(\text{jet}, \ell) >$	1.0	1.0				1.0 (2 nd muon)						
Binned variable	$(E_T^{miss}/m_{eff}^{incl} \text{ in 4 bins})$ -											
Bin width		(0.1, 4 th is inclusive) -										
			Sig	gnal region								
Requirement		Single	-bin (binn	ed) hard si	ngle-l	epton						
	3-jet	t	5	-jet		6-jet						
N_{ℓ}			1 elec	tron or muon	ı							
p_T^{ℓ} [GeV] >				25								
Lepton veto			p_T 2 nd le	$e^{pton} < 10 \text{ Ge}$	eV							
$N_{\rm jet}$	≥ 3		2	≥ 5		≥ 6						
$p_{\rm T}$ ^{jet} [GeV] >	80, 80,	30	80, 50,	40, 40, 40	- 8	0, 50, 40, 40, 40, 40						
Jet veto	$(p_T 5^{th_{jet}} <$	40 GeV	(p _T ^{6thjet}	< 40 GeV)		-						
$E_{\rm T}^{\rm miss}$ [GeV] >	500 (30	00)	:	300		350 (250)						
$m_T [GeV] >$	150	_	200	(150)		150						
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm excl} >$	0.3											
$m_{\rm eff}^{\rm incl}~[{ m GeV}] >$		1400 (800) 600										
Binned variable		$(m_{\text{eff}}^{\text{incl}} \text{ in})$	n 4 bins)			$(E_T^{miss} \text{ in } 3 \text{ bins})$						
Bin width	(20	$0 \text{ GeV}, 4^{t}$	h is inclusiv	re)	(100	$GeV, 3^{rd}$ is inclusive						

		Signal regio	n					
Requirement	Single-bin (binned) hard dilepton							
nequilement	Low-m	ultiplicity (≤ 2 -jet)	3-jet					
	$ee/\mu\mu$	еµ	$ee/\mu\mu$	eμ				
N_{ℓ}		2, 2 of opposite sign or ≥ 2						
p_T^{ℓ} [GeV] >	14,10							
$N_{\ell\ell}$ with $81 < m_{\ell\ell} < 101 \text{ GeV}$	0	0 – 0						
N _{jet}		≤ 2	≥ 3					
p_T ^{jet} [GeV] >		50,50	50,	50, 50				
N _{b-jet}		0						
R		0.35						
M'_R [GeV] >	60	0 in 5 bins)						
M'_R bin width [GeV]		(100, the last is in	clusive)					

	1L(H)_7-jet	1L(H)_WR_7-jet	1L(H)_V	
N _{lep}			== 1	
$p_T^{\ell_1}$ [GeV]			> 25 (2	0)
$p_T^{\ell_2}$ [GeV]			< 10	
Njet			≥ 7	
p_T^{jet} [GeV]			> 80, 25, 25, 25,	25, 25, 25
N _{b-tag}	-	== 0	≥ 1	
E_T^{miss} [GeV]	> 180	$\in [100, 180]$	$\in [100, 180]$	$\in [1$
m_T [GeV]	> 120	$\in [40, 80]$	$\in [40, 120]$	∈[
$m_{\text{eff}}^{\text{incl}}$ [GeV]			> 750)

イロト イヨト イヨト イヨト

ELE SQA

Signal regions for the zero lepton "multijets" search

	Signal vegion			61 1	1	Dominament				Si	gnal reg	ion				
Requirement	0.11			Signal I	egion		requirement		4j1	4jm	4jt	5j	6jl	6jm	6jt	6jt+
	2j1	2jm	2jt	2jW	3j	4jw		100								
E_T^{miss} [GeV] >	160			E _T [Gev] >	100											
$p_{et1} [C_eV] >$	130			p_T^{perf} [GeV] >	130											
p _T [Gev] >	130			$p_T^{\text{jet}_2}$ [GeV] >	60											
$p_{T}^{\mu\nu_{2}}$ [GeV] >	60			wjet3 [CoV] >	03											
$p_T^{\text{jet}_3}$ [GeV] >			-		60	40	p _T [Gev] >	<u> </u>								
n ^{jet} 4 [GeV] >			_			40	p_T^{eev4} [GeV] >	60								
pT [Gev] >	-					40	$p_T^{\text{jet}_5}$ [GeV] >			-				60		
$\Delta \phi(\text{jet}_{1,2,(3)}, E_T^{\text{mass}})_{\text{min}} >$				0.4			n ^{jet} ⁶ [GeV] >			_					60	
$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$			-			0.2	p _T [GeV] >								00	
W candidates		-		$2(W \rightarrow i)$	_	$(W \rightarrow i) \pm (W \rightarrow ii)$	$\Delta \phi(\text{jet}_{1,2,(3)}, E_T^{\text{mns}})_{\text{min}} >$					0.4				
maine / ATT (c) 11/2) -			~	2(17 7))		(n,j) + (n,jj)	$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$					0.2				
$E_{\rm T}^{\rm mas}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	8		.5			-	$E^{\text{miss}}/\sqrt{H_{\pi}}$ [CeV ^{1/2}] >		10				_			
$E_T^{\text{miss}}/m_{\text{eff}}^{N_j} >$		-		0.25	0.3	0.35	maine i Ni		10							
m^{incl} [GeV] >	800	1200	1600	1800	2200	1100	$E_{\rm T}^{\rm mass}/m_{\rm eff}$ >		-	0.4	0.25		0.2		0.25	0.15
eff () >	5.00	1.200		1000		1100	m_{eff}^{incl} [GeV] >	700	1000	1300	2200	1200	900	1200	1500	1700

Signal regions for the same-sign/three leptons + jets search

[Dominomont			Sig	nal region				
	Requirement	SR3b	SR0b	SR1b	SR3Llow	SR3Lhig	gh		
	Leptons	SS or 3L	SS	SS	3L	3L			
[N_{b-jet}	≥ 3	=0	≥ 1	-	-			
	$N_{ m jet} \geq$	5	3	3	4	4			
	$E_{\rm T}^{\rm miss}$ [GeV]		> 150		$50 < E_{\rm T}^{\rm miss} < 150$	> 150			
	$m_{\rm T}~[{\rm GeV}] >$	-	100	-	-	-			
	Veto	-	-	SR3b	Z boson, SR3b	SR3b			
	$m_{\rm eff}~[{\rm GeV}]>$	350	400	700	700 400				
SR0b 1bin	Total	ee	eμ μ	μμ SR1	b 1bin	Total	ee	$e\mu$	μμ
Observed events	14	7	5	2 Obs	erved events	10	6	4	0
Total expected backgrou	ind events 6.5 ± 2.3	1.5 ± 0.9 3.1	1 ± 1.2 1.9 ± 0).7 Tota	l expected background even	its 4.7 ± 2.1	1.4 ± 0.8	2.1 ± 1.1	1.2 ± 0.4
Components of the back ttV, ttH, tZ and ttt Dibosons and tribosons Fake leptons Charge-flip electrons	aground 0.9 ± 0.4 4.2 ± 1.7 $1.2^{+1.2}_{-1.2}$ 0.2 ± 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 ± 0.2 $0.3 \pm 0.3 \pm 0.3 \pm 0.3 \pm 0.0$ 3 ± 1.0 $1.5 \pm 0.0.4^{+0.6}_{-0.4}$ $0.1^{+1}_{-1.4}$ ± 0.03	0.2 ttV, 0.6 Dibo 0.1 Fake - Char	ponents of the background $t\bar{t}H$, tZ and $t\bar{t}t\bar{t}$ sons and tribosons leptons ge-flip electrons	$\begin{array}{c} 2.5 \pm 1.7 \\ 0.9 \pm 0.4 \\ 0.8 \substack{+1.2 \\ -0.8 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c} 0.6 \pm 0.3 \\ 0.10 \pm 0.04 \\ 0.4 \substack{+0.7 \\ -0.4} \\ 0.3 \pm 0.1 \end{array}$	$\begin{array}{c} 1.2\pm1.0\\ 0.3\pm0.1\\ 0.4^{+0.5}_{-0.4}\\ 0.3\pm0.1 \end{array}$	$\begin{array}{c} 0.7 \pm 0.3 \\ 0.5 \pm 0.3 \\ < 0.1 \\ - \end{array}$
p(s = 0)	0.03	0.01	0.21 0.	46 p(s =	= 0)	0.07	0.01	0.18	0.50
SR3b 1bin	Total	ee	eμ	μμ SR3	Llow 1bin	Total	ee	eμ	μμ
Ubserved events	1	08104 (1	0 Obs	erved events	6	2	2	2
Generation of the head	ind events 2.2 ± 0.8	0.8 ± 0.4	0.9 ± 0.3 0.3 ±	Tota	l expected background even	its 4.3 ± 2.1	0.8 ± 0.5	2.1 ± 1.1	1.5 ± 0.7
$t\bar{t}V, t\bar{t}H, tZ$ and $t\bar{t}t\bar{t}$ Dibosons and tribosons Fake leptons Charge-flip electrons	$\begin{array}{c} 1.3 \pm 0.5 \\ < 0.1 \\ 0.7 \pm 0.6 \\ 0.2 \pm 0.1 \end{array}$	0.3 ± 0.1 (< 0.1 0.4 ± 0.4 (0.10 ± 0.05 0.0	0.6 ± 0.2 $0.4 \pm$ < 0.1 $<0.2 \pm 0.2 0.1 \pm8 \pm 0.03$	0.2 Con 0.1 ttV, 0.1 Dibo - Fake	apponents of the background $t\bar{t}H$, tZ and $t\bar{t}t\bar{t}$ sons and tribosons leptons	1.6 ± 1.0 1.2 ± 0.6 1.6 ± 1.6	$\begin{array}{c} 0.4 \pm 0.3 \\ 0.2 \pm 0.2 \\ 0.2^{+0.3}_{-0.2} \end{array}$	$\begin{array}{c} 0.7 \pm 0.4 \\ 0.3 \pm 0.2 \\ 1.1 \pm 0.9 \end{array}$	$\begin{array}{c} 0.5 \pm 0.3 \\ 0.7 \pm 0.4 \\ 0.3 \substack{+0.4 \\ -0.3 \end{array}$
p(s = 0)	0.50	0.50	0.46 0	J.50 p(s :	= 0)	0.29	0.16	0.50	0.36

J. Maurer (IFIN-HH)

Inclusive searches for squarks and gluinos

Signal regions for the dilepton "off-Z" search

Poguinem ent	Signal region									
requirement	SR-2j-bveto	SR-2j-btag	SR-4j-bveto	SR-4j-btag	SR-loose					
$N_{\text{jet}} \ge$	≥ 2	≥ 2	≥ 4	≥ 4	$(2, \ge 3)$					
N_{b-jet}	= 0	≥ 1	= 0	≥ 1	-					
$E_{\rm T}^{\rm miss}$ [GeV] >	200	200	200	200	(150, 100)					
$m_{\ell\ell} \; [\text{GeV}] \notin$	[80, 110]	[80, 110]	[80, 110]	[80, 110]	[80, 110]					

ъ

A D > A B > A B >

	$0LRaz_SR_{loose}$	$0LRaz_SR_{tight}$
E_T^{miss} [GeV] >	16	50
$p_{T}^{\text{jet}_{1,2}}$ [GeV] >	150	200
$\Delta \phi(\text{jet}_{1,2}, E_T^{\text{miss}}) >$	0.4	1.4
R >	0.5	0.6
M'_R [GeV] >	700	900

Signal region	$0LRaz_SR_{loose}$	$0LRaz_SR_{tight}$
Expected ba	ckground events be	fore the fit
tī	138	1.8
Single top	23.9	1.6
$t\bar{t} + V$	4.7	0.2
W+jets	794	49
Z+jets	762	58
Diboson	112	10
Fitte	ed background even	its
tī	117 ± 22	1.7 ± 0.5
Single top	24.9 ± 2.6	1.8 ± 0.3
$t\bar{t} + V$	3.7 ± 1.0	0.20 ± 0.07
W+jets	454 ± 40	27.0 ± 3.0
Z+jets	618 ± 76	45 ± 6
Diboson	94 ± 49	10 ± 5
Multi-jet	14 ± 13	2.4 ± 2.4
Total background	1326 ± 84	88 ± 8
Observed events	1322	74
$\langle \epsilon \sigma \rangle_{obs}^{95} [fb]$	6.17	0.83
S_{obs}^{95}	125.3	16.8
S_{exp}^{95}	$135.1^{+64.8}_{-42.2}$	$24.3^{+9.9}_{-6.9}$
p(s = 0)	0.49	0.50

・ロト ・回ト ・ヨト

ъ

Signal regions for the 0-1 leptons $+ \ge 3$ *b*-jets search

Poquiroment			Signal	region									
nequirement	SR-0ℓ-4j-A	SR-0ℓ-4j-B	SR-0ℓ-4j-C*	SR-0ℓ-7j-4	A.	$SR-0\ell-7j-B$	SR-0ℓ-7j-C						
Baseline 0-lepton selection		lepton	veto, $p_{\rm T}^{\rm jet_1} > 90$	GeV, $E_{\rm T}^{\rm miss} >$	> 15	0 GeV							
N jets $(p_T [GeV]) \ge$	4 (50)	4 (50)	4 (30)	7 (30)		7 (30)	7 (30)						
$E_{\rm T}^{\rm miss}$ [GeV] >	250	350	400	200		350	250						
$m_{\rm eff}^{\rm incl} [{\rm GeV}] >$	-	-	-	1000		1000	1500						
$m_{\rm eff}^{4j}$ [GeV] >	1300	1100	1100	-		-		-		-		-	-
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}^{\rm 4j}} [\sqrt{GeV}] >$	-	-	16	-		-	-						
Poquiromont		Signal											
nequirement	SR-1ℓ-6j-A	SR-1 ℓ -6j-B	SR-1 <i>l</i> -6	j-C									
Baseline 1-lepton selection	≥ 1 signal lep	ton (e,μ) , $p_T^{\text{jet}_1}$	> 90 GeV, $E_{\rm T}^{\rm miss}$	> 150 GeV									
N jets $(p_T [GeV]) \ge$	6 (30)	6 (30)	6 (30)										
$E_{\rm T}^{\rm miss}$ [GeV] >	175	225	275										
$m_{\rm T} [{\rm GeV}] >$	140	140	160										
$m_{\text{off}}^{\text{incl}} [\text{GeV}] >$	700	800	900										

EL OQO

イロト イヨト イヨト イヨト

Signal regions for the searches with taus

Requirement		Signal region								
		1τ Loose SR	1τ	Tight SR]					
Taus	$N_{\tau}^{\text{medium}} = 1$									
		$p_{\rm T} > 30 {\rm GeV}$								
$\Delta \phi(\text{jet}_{1,2}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}) >$		0.4]					
$\Delta \phi(\tau, E_{T}^{miss}) >$		0.2								
$m_{\rm T}^{\tau}$ [GeV] >		140								
$E_{\rm T}^{\rm miss}$ [GeV] >		200		300]					
$H_{\rm T}$ [GeV] >		800	1000							
D I I		Signal region								
Requirement		2τ Inclusive	nclusive SR 2τ GMSB SR 2τ nGM SI		$\mathbf{R} = 2\tau \mathbf{bRPV SR}$					
Taus		$N_{\tau}^{\text{loose}} \ge 2$								
		$p_{\rm T} > 20 {\rm GeV}$								
$\Delta \phi(\text{jet}_{1,2}, E_T^{\text{miss}}) \ge$		0.3								
$m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2} [{\rm GeV}] \ge$		150		250		250	150			
$H_{\rm T}^{2\rm j}$ [GeV] >		1000		1000		600	1000			
$N_{\text{jet}} \ge$		-			4					
		Signal region								
nequirement	$\tau +$	ℓ GMSB SR	$\tau + \ell$	nGM SR	$\tau + \ell$	brpv sr	$\tau + \ell$ mSUGRA S	R		
Taus	$N_{\tau}^{\text{loose}} \ge 1$							_		
	$p_{\rm T} > 20 {\rm GeV}$									
$N_{\ell} =$		1								
$m_{\rm T}^{\ell} ~[{\rm GeV}] >$		100								
$m_{\rm eff}~[{\rm GeV}] >$	1700		-		1300		-			
$E_{\rm T}^{\rm miss}~[{\rm GeV}]>$		-	-			-	300			
$N_{\rm jet} \ge$		-	3		4					

J. Maurer (IFIN-HH)

Signal regions for the searches with photons

Signal Region BWH	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$SR_{W-L}^{\gamma\gamma}$	
No. photons (E _T [GeV])	> 1 (> 75)	> 1 (> 75)	> 1 (> 75)	> 1 (> 75)
E_{T}^{miss} [GeV]	> 150	> 250	> 150	> 200
H _T [GeV]	_	_	> 600	> 400
m_{eff} [GeV]	> 1800	> 1500	-	-
$\Delta \phi_{\min}(\text{jet}, E_T^{\text{miss}})$ (No. leading jets)	> 0.5 (2)	> 0.5 (2)	> 0.5 (2)	> 0.5 (2)
$\Delta \phi_{\min}(\gamma, E_T^{miss})$	-	> 0.5	-	> 0.5
Signal Region	$SR_L^{\gamma b}$	$SR_{H}^{\gamma t}$	$^{\circ}$ SR _L ^{γj}	$SR_{H}^{\gamma j}$
No. photons (E _T [GeV])	> 0 (> 125)	> 0 (> 150) 1 (> 125)	1 (> 300)
E_T^{miss} [GeV]	> 100	> 200) > 200	> 300
H_T [GeV]	-	> 1000) –	> 800
No. jets (No. b-jets)	2 - 4 (> 1)	> 3 (> 0)	$> 3^{a}$	$> 1^{a}$
No. leptons	0		- 0	0
M_{bb} [GeV]	75 - 150	-		-
$M_T^{\gamma, E_T^{mlss}}$ [GeV]	> 90	> 90) –	-
$\Delta \phi_{\min}(\text{jet}, E_T^{\text{miss}})$ (No. leading jets)	> 0.3 (2)	> 0.3 (4)	> 0.4 (2)	> 0.4 (2)
R_{Γ}^4	-		< 0.85	
$\Delta \phi_{\min}(\text{jet}, \gamma)$	-	-		< 2.0

Signal Regions	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$SR_{W-L}^{\gamma\gamma}$	$SR_{W-H}^{\gamma\gamma}$
Expected background events	$0.06^{+0.24}_{-0.03}$	$0.06^{+0.24}_{-0.04}$	$2.04^{+0.82}_{-0.75}$	$1.01 \stackrel{+0.48}{_{-0.42}}$
QCD	$0.00^{+0.24}_{-0.00}$	$0.00^{+0.24}_{-0.00}$	$0.32^{+0.45}_{-0.32}$	$0.22^{+0.33}_{-0.22}$
EW	0.02 ± 0.02	0.0 ± 0.0	0.64 ± 0.27	0.13 ± 0.08
$(W \rightarrow \ell \nu)\gamma\gamma$	0.04 ± 0.02	0.05 ± 0.04	1.01 ± 0.62	0.53 ± 0.34
$(Z \rightarrow \nu \nu)\gamma\gamma$	0.00 ± 0.00	0.01 ± 0.01	0.07 ± 0.04	0.13 ± 0.07
Observed events	0	0	5	1
Signal Regions		$SR_L^{\gamma b}$		$SR_{H}^{\gamma b}$
Expected background events		18.8 ± 5.3		3.82 ± 1.25
$e \rightarrow \gamma$		3.2 ± 0.4		0.18 ± 0.08
$W \rightarrow \ell \nu$		12.6 ± 4.9		3.35 ± 1.05
QCD		2.3 ± 2.1		0.00 ± 0.65
$Z \rightarrow \nu \nu$		0.8 ± 0.4		0.29 ± 0.15
Observed events		12		2
Signal Regions		$SR_L^{\gamma j}$		$SR_{H}^{\gamma j}$
Expected background events		1.27 ± 0.43		0.84 ± 0.38
$W + \gamma$		0.13 ± 0.12		0.54 ± 0.28
$Z + \gamma$		$0.03^{+0.05}_{-0.03}$		$0.21^{+0.23}_{-0.21}$
$t\bar{t} + \gamma$		0.64 ± 0.40		0.05 ± 0.05
Single- $t + \gamma$		0.06 ± 0.02		0.03 ± 0.01
$\gamma + \text{jet} (\text{QCD background})$		$0.00^{+0.06}_{-0.00}$		0.00 ± 0.00
$e \rightarrow \gamma$		0.38 ± 0.10		0.00 ± 0.00
$j \rightarrow \gamma$		$0.02^{+0.08}_{-0.02}$		$0.00^{+0.08}_{-0.00}$
Observed events		2		2

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □