LHCb PDF results

Mika Vesterinen, Physikalisches Institut Heidelberg, On behalf of the LHCb Collaboration

3rd Annual Large Hadron Collider Physics Conference, St. Petersburg 3rd September 2015

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

UNIVERSITÄT

ZUKUNF

SEIT 1386

IDFL BERG

LHCb probes a unique region of the proton structure

JINST 3 (2008) S08005

The LHCb detector

JINST 3 (2008) S08005

The LHCb detector

Excellent Run-I performance (Int. J. Mod. Phys. A 30, 1530022 (2015)). Features relevant for PDF sensitive measurements:

- 2 < η < 5
- Excellent tracking and muon-ID
- Good jet reconstruction, and excellent light, c, b separation

2012 (8 TeV) luminosity determined to 1.16% (JINST 9 P12005, 2014)

Outline

- Inclusive W and Z production
- W and Z plus jets (including b and c tagged)
- Brief mention of other PDF sensitive results

I'll discuss the following:

$Z/\gamma^* \rightarrow \mu\mu$ and W/Z ratios	7 TeV, 1 fb ⁻¹	JHEP 08 (2015) 039 [LHCB-PAPER-2015-001]
$W \rightarrow \mu \nu$ production	7 TeV, 1 fb ⁻¹	JHEP 12 (2014) 079 [LHCB-PAPER-2014-033]
Low mass Drell-Yan	7 TeV, 37 pb ⁻¹	LHCb-CONF-2012-013

Inclusive W&Z production at 7 TeV $_{PT}(\mu) > 20 \text{ GeV}, 2 < \eta < 4.5,$ $60 < M < 120 \text{ GeV} (Z/\gamma^*)$

W production at 7 TeV

Cross sections are in good agreement with NNLO predictions^{1,2}

¹Gavin *et al.*, **1011.3540**; ²Li, Petriello, **1208.5967**

Mika Vesterinen

W production at 7 TeV

Likewise for the charge asymmetry

JHEP 08 (2015) 039

Z production at 7 TeV

Agreement tested down to few % level, with $O(\sigma_s^2)$ predictions using various PDF sets

W/Z ratios

More information in the correlations between observables

More figures here

Low mass Drell-Yan

Complementary constraint at lower Q^2 and lower x.

Agrees well with predictions, within limiting statistical uncertainties. Update planned at 7, 8, 13 TeV. Also high mass DY...

Mika Vesterinen

Impact on PDFs

See M. Ubiali, LHCb Implications workshop, 15/10/2014 (slides)

xd(x,Q)

Impact on PDFs

See M. Ubiali, LHCb Implications workshop, 15/10/2014 (slides)

xu(x,Q)

1.6 NNPDF30_nlo_as_0118.LHgrid NNPDF3.0 NNPDF30_nlo_as_0118_datafit_hcb_RW.LHgrid 1.4 (incl. early LHCb W,Z data) Q = 1.41 GeV + latest LHCb W $\rightarrow \mu \nu$ 1.2 ₹^{0.6} Ratio 0.4 • MSTW08 ▼ NNPDF23 0.2 CT10 □ ABM12 • HERA15 1R09 -0.2 -0.4 0.8 p > 20 GeV/cTheory-Data 0.0-07-022 M. Ubiali LHCb Implications Workshop 4.5 2 2.5 3 3.5 4 0.6 15/10/2014 η $W \rightarrow \mu \nu$, 7 TeV, 1 fb⁻¹ JHEP 12 (2014) 079 10⁻³ 10⁻⁵ 10⁻⁴ 10⁻² 10⁻¹ х

I'll discuss the following:

W+b,c and friends	7,8 TeV, 3 fb ⁻¹	arXiv:1505.04051
b&c tagging of jets at LHCb	7,8 TeV, 3 fb ⁻¹	JINST 10 (2015) P06013 LHCB-PAPER-2015-016
Z+b	7 TeV, 1 fb ⁻¹	JHEP 01 (2015) 064 [LHCB-PAPER-2014-055]
Z+jet	7 TeV, 1 fb ⁻¹	JHEPOI (2014) 033 [LHCB-PAPER-2013-058]

Fiducial cuts: p_T(jet) > 20 GeV, 2 < η(jet) < 4.5, ΔR(μ,jet) > 0.4

Good agreement with $O(a_s^2)$ predictions using various PDFs

Z+b

Beauty component extracted using template fit based on secondary vertex properties (since superseded by dedicated b/c-tagging algorithm JINST 10 (2015) P06013)

Good agreement with NLO prediction

Mika Vesterinen

Now try to fit the b and c components...

Exploit the excellent performance of the VErtex LOcator (2014 JINST 9 P09007)

The "corrected mass" of a Secondary Vertex in a jet

$$M_{cor}(SV) = \sqrt{M^2 + p^2 \sin^2\theta} + p \sin\theta.$$

The "corrected mass" of a Secondary Vertex in a jet

Two Boosted Decision Trees based on 10 variables, incl. M_{corr} . One trained for b|c and one for bc|light.

Mika Vesterinen

W+b/c results

Good agreement with predictions (NLO MCFM, CTI0)

Also measure W+jet / Z+jet. Full table here

More PDF sensitive measurements

- Top production constrains the low- and high-x gluon (arXiv:1506.00903). See LHCP talk of S. Farry.
- Heavy Flavour production: gluon at low-x, low Q²

	B ⁺ cross section	7 TeV, 35 pb ⁻¹	JHEP 04 (2012) 093
	Charm production	7 TeV, 15 nb ⁻¹	Nucl. Phys. B 871 (2013) 1-20
7	NEW Charm production See LHCP talk of A. Pearce	13 TeV, 5 pb ⁻¹	LHCB-PAPER-2015-041
2	NEW J/psi (and b-fraction) Also in LHCP talk of A. Pearce	13 TeV, 3 pb ⁻¹	arXiv:1509.00771

Central Exclusive Production constrains the gluon at x < 10⁻⁵.
E.g. exclusive Υ (arXiv:1505.08139). See LHCP talk of V. Coco.

Conclusions and outlook

- LHCb provides a unique probe at low- and high-x.
- Already many Run-I measurements of W and Z (inclusive, light jets, b & c jets), top, HF and CEP...

Backup slides

$Z \rightarrow \mu \mu$ candidate

Event 885617570 Run 157596 Sat, 11 Jul 2015 02:01:18

JHEP 01 (2015) 064

Corrected mass in Z+b

JHEP08(2015)039

Mika Vesterinen

W+jet results

	Results		SM prediction	
	$7\mathrm{TeV}$	$8\mathrm{TeV}$	$7\mathrm{TeV}$	$8\mathrm{TeV}$
$\frac{\sigma(Wb)}{\sigma(Wj)} \times 10^2$	$0.66 \pm 0.13 \pm 0.13$	$0.78 \pm 0.08 \pm 0.16$	$0.74_{-0.13}^{+0.17}$	$0.77_{-0.13}^{+0.18}$
$\frac{\sigma(Wc)}{\sigma(Wj)} \times 10^2$	$5.80 \pm 0.44 \pm 0.75$	$5.62 \pm 0.28 \pm 0.73$	$5.02^{+0.80}_{-0.69}$	$5.31_{-0.52}^{+0.87}$
$\mathcal{A}(Wb)$	$0.51 \pm 0.20 \pm 0.09$	$0.27 \pm 0.13 \pm 0.09$	$0.27^{+0.03}_{-0.03}$	$0.28^{+0.03}_{-0.03}$
$\mathcal{A}(Wc)$	$-0.09 \pm 0.08 \pm 0.04$	$-0.01 \pm 0.05 \pm 0.04$	$-0.15^{+0.02}_{-0.04}$	$-0.14^{+0.02}_{-0.03}$
$\frac{\sigma(W^+j)}{\sigma(Zj)}$	$10.49 \pm 0.28 \pm 0.53$	$9.44 \pm 0.19 \pm 0.47$	$9.90^{+0.28}_{-0.24}$	$9.48^{+0.16}_{-0.33}$
$rac{\sigma(W^-j)}{\sigma(Zj)}$	$6.61 \pm 0.19 \pm 0.33$	$6.02 \pm 0.13 \pm 0.30$	$5.79_{-0.18}^{+0.21}$	$5.52_{-0.25}^{+0.13}$

W systematics

Source	$\Delta \sigma_{W^+ \to \mu^+ \nu}$ [%]	$\Delta \sigma_{W^- \to \mu^- \overline{\nu}} [\%]$	$\Delta R_W \ [\%]$
Template shape	0.28	0.39	0.59
Template normalisation	0.10	0.10	0.06
Reconstruction efficiency	1.21	1.20	0.12
Selection efficiency	0.33	0.32	0.18
Acceptance and FSR	0.18	0.12	0.21
Luminosity	1.71	1.71	

JHEP 08 (2015) 039

Z production at 7 TeV

