Field theory amplitudes from the pure spinor superstring

Carlos R. Mafra

(In collaboration with Oliver Schlotterer)

Department of Applied Mathematics and Theoretical Physics University of Cambridge

1 / 28

Introduction and motivation

- Since the discovery the pure spinor formalism many superstring amplitudes have been computed with manifest supersymmetry
 - N-pts @ tree-level
 - 2 N-pts @ 1-loop (low energy limit)
 - 4- and 5-pts @ 2-loops (5pt: low energy limit)
 - 4-pt @ 3-loops (low energy limit)
- ullet The lpha'
 ightarrow 0 limit gives rise to field theory amplitudes
- What can we say about FT amplitudes?

FT amplitudes from educated guesses

- The idea is to antecipate how the result of taking the $\alpha' \to 0$ limit will look like
- FT limit will be composed out of kinematics and propagators and loop momentum integrals
- The FT amplitude will be a BRST-invariant expression constructed out of these elements
- Strategy depends heavily on how much control we have over the string results
- Kinematics of string amplitudes given by pure spinor superspace expressions

SYM superfields in 10D (Witten '86)

Covariant description of D=10 SYM theory with superfields

$$A_{\alpha}(x,\theta), A_{m}(x,\theta), W^{\alpha}(x,\theta), F_{mn}(x,\theta)$$

Linearized EOMs

$$D_{\alpha}A_{\beta} + D_{\beta}A_{\alpha} = \gamma_{\alpha\beta}^{m}A_{m}, \quad D_{\alpha}A_{m} = (\gamma_{m}W)_{\alpha} + \partial_{m}A_{\alpha}$$
$$D_{\alpha}W^{\beta} = \frac{1}{4}(\gamma^{mn})_{\alpha}{}^{\beta}F_{mn}, \quad D_{\alpha}F_{mn} = \partial_{[m}(\gamma_{n]}W)_{\alpha}$$

• Well-known θ^{α} expansions:

$$A_{\alpha}(x,\theta) = \frac{1}{2} a_{m} (\gamma^{m} \theta)_{\alpha} - \frac{1}{3} (\chi \gamma_{m} \theta) (\gamma^{m} \theta)_{\alpha} + \cdots$$

$$A_{m}(x,\theta) = a_{m} - (\chi \gamma_{m} \theta) + \cdots$$

$$W^{\alpha}(x,\theta) = \chi^{\alpha} - \frac{1}{4} (\gamma^{mn} \theta)^{\alpha} f_{mn} + \cdots$$

$$F_{mn}(x,\theta) = f_{mn} - 2(\partial_{[m} \chi \gamma_{n]} \theta) + \cdots$$

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 4 / 28

String tree-level amplitude

N-point prescription (Berkovits '00):

$$A_{\mathsf{tree}} = \langle V_1 V_2 V_3 \int U_4 \ldots \int U_n \rangle$$

ullet where V and U are massless vertex operators

$$\begin{split} V &= \lambda^{\alpha} A_{\alpha}(x,\theta), \quad QV = 0 \\ U &= \partial \theta^{\alpha} A_{\alpha} + A_{m} \Pi^{m} + d_{\alpha} W^{\alpha} + \frac{1}{2} N^{mn} F_{mn}, \quad QU = \partial V \end{split}$$

- λ^{α} is the pure spinor satisfying $(\lambda \gamma^{m} \lambda) = 0$
- $Q = \lambda^{\alpha} D_{\alpha}$ is the BRST charge
- The CFT computation of the tree-level correlator is usual
- ullet Use OPEs to integrate out non-zero modes of $\partial heta^{lpha}, d_{lpha}, \Pi^m$ and N^{mn}

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 5 / 28

Pure Spinor Superspace

• Surviving zero-modes of the pure spinor λ^{α} and θ^{α} integrated out with the prescription

$$\langle (\lambda \gamma^m \theta)(\lambda \gamma^n \theta)(\lambda \gamma^p \theta)(\theta \gamma_{mnp} \theta) \rangle = 1$$

- ullet PSS defined as expressions containing $(\lambda^{lpha}, heta^{lpha})$ such that $\langle (\lambda^3 heta^5)
 angle = 1$
- Component expansions straightforward to compute

$$\langle V_1 V_2 V_3 \rangle = (e^1 \cdot e^2)(k^2 \cdot e^3) + e_m^1(\chi_2 \gamma^m \chi_3) + \operatorname{cyc}(1, 2, 3)$$

PSS framework optimal to a BRST cohomology analysis of amplitudes

4□ > 4□ > 4 = > 4 = > □
9

Pure Spinor Superspace Cohomology

• BRST charge $Q = \lambda^{\alpha} D_{\alpha}$ and SYM equations of motion are closely related

$$\begin{split} &D_{\alpha}A_{\beta}+D_{\beta}A_{\alpha}=\gamma_{\alpha\beta}^{m}A_{m}, \quad D_{\alpha}A_{m}=(\gamma_{m}W)_{\alpha}+\partial_{m}A_{\alpha}\\ &D_{\alpha}W^{\beta}=\frac{1}{4}(\gamma^{mn})_{\alpha}{}^{\beta}\mathcal{F}_{mn}, \quad D_{\alpha}\mathcal{F}_{mn}=2\partial_{[m}(\gamma_{n]}W)_{\alpha} \end{split}$$

 String amplitudes are expressions in the BRST cohomology of pure spinor superspace

$$\mathcal{A}_3 = \langle V_1 V_2 V_3 \rangle \text{ and } Q(V_1 V_2 V_3) = 0, \quad V_1 V_2 V_3 \neq Q(\Omega_{123})$$

- Therefore the FT amplitudes must also be in the cohomology!
- The vertex V alone is not enough, need some OPE technology for pure spinor vertex operators

FT amplitudes

7 / 28

Multiparticle SYM superfields (CM, Schlotterer '14, '15)

Recursive definition of multiparticle superfields

$$K_B \in \{A_{\alpha}^B, A_B^m, W_B^{\alpha}, \mathcal{F}_B^{mn}\}$$

inspired by OPE computations

$$U^{1}(z_{1})U^{2}(z_{2}) \sim \frac{1}{z_{12}} \left[\partial \theta^{\alpha} A_{\alpha}^{12} + A_{m}^{12} \Pi^{m} + d_{\alpha} W_{12}^{\alpha} + \frac{1}{2} N^{mn} F_{mn}^{12} \right]$$

$$U^{12}(z_{2})U^{3}(z_{3}) \sim \frac{1}{z_{23}} \left[\partial \theta^{\alpha} A_{\alpha}^{123} + A_{m}^{123} \Pi^{m} + d_{\alpha} W_{123}^{\alpha} + \frac{1}{2} N^{mn} F_{mn}^{123} \right]$$

For example,

$$W_{12}^{\alpha} = \frac{1}{4} (\gamma^{mn} W^{2})^{\alpha} F_{mn}^{1} + W_{2}^{\alpha} (k^{2} \cdot A^{1}) - (1 \leftrightarrow 2)$$

$$W_{123}^{\alpha} = -(k^{12} \cdot A^{3}) W_{12}^{\alpha} + \frac{1}{4} (\gamma^{rs} W^{3})^{\alpha} F_{rs}^{12} - (12 \leftrightarrow 3)$$

$$+ \frac{1}{2} (k^{1} \cdot k^{2}) [W_{2}^{\alpha} (A^{1} \cdot A^{3}) - (1 \leftrightarrow 2)]$$

Multiparticle SYM superfields

The multiparticle superfields satisfy generalized SYM EOMs

$$\begin{split} D_{\alpha}W_{1}^{\beta} &= \frac{1}{4}(\gamma^{mn})_{\alpha}{}^{\beta}F_{mn}^{1} \\ D_{\alpha}W_{12}^{\beta} &= \frac{1}{4}(\gamma^{mn})_{\alpha}{}^{\beta}F_{mn}^{12} \\ &+ (k^{1} \cdot k^{2})(A_{\alpha}^{1}W_{2}^{\beta} - A_{\alpha}^{2}W_{1}^{\beta}) \\ D_{\alpha}W_{123}^{\beta} &= \frac{1}{4}(\gamma^{mn})_{\alpha}{}^{\beta}F_{mn}^{123} \\ &+ (k^{1} \cdot k^{2})[A_{\alpha}^{1}W_{23}^{\beta} + A_{\alpha}^{13}W_{2}^{\beta} - (1 \leftrightarrow 2)] \\ &+ (k^{12} \cdot k^{3})[A_{\alpha}^{12}W_{3}^{\beta} - (12 \leftrightarrow 3)], \end{split}$$

- and similarly for the other superfields $A_{\alpha}^{B}, A_{B}^{m}, F_{B}^{mn}$
- Surprising and beautiful multiparticle structure hidden in SYM theory!

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 9 / 28

Multiparticle symmetries

ullet The superfields K_B satisfy generalized Lie symmetries

$$\begin{split} 0 &= \textit{K}_{12} + \textit{K}_{21}, \\ 0 &= \textit{K}_{123} + \textit{K}_{231} + \textit{K}_{312}, \quad \text{(Jacobi identity)} \\ 0 &= \textit{K}_{1234} - \textit{K}_{1243} + \textit{K}_{3412} - \textit{K}_{3421} \\ 0 &= \text{general formula known} \end{split}$$

- These are the same symmetries obeyed by nested commutators
- Can make symmetries manifest in the notation

$$\textit{K}_{12} \rightarrow \textit{K}_{[1,2]}, \quad \textit{K}_{123} \rightarrow \textit{K}_{[[1,2],3]}, \quad \textit{K}_{1234} \rightarrow \textit{K}_{[[[1,2],3],4]} \dots$$

Berends-Giele currents

Define new superfields

$$\mathcal{K}_B \in \{\mathcal{A}_{\alpha}^B, \mathcal{A}_B^m, \mathcal{W}_B^{\alpha}, \mathcal{F}_B^{mn}\}$$

from all binary trees (Catalan #) dressed with propagators and $\mathcal{K}_{\mathcal{B}}$

Satisfy simple EOMs for general multiparticle label, e.g.

$$\left\{D_{\alpha}, \mathcal{W}_{B}^{\beta}\right\} = \frac{1}{4} (\gamma^{mn})_{\alpha}{}^{\beta} \mathcal{F}_{mn}^{B} + \sum_{XY=B} \left(\mathcal{A}_{\alpha}^{X} \mathcal{W}_{Y}^{\beta} - \mathcal{A}_{\alpha}^{Y} \mathcal{W}_{X}^{\beta}\right)$$

Towards FT tree amplitudes

 String OPE computations at tree-level can be written using only the multiparticle unintegrated vertex

$$V_B = \lambda^{\alpha} A_{\alpha}^B$$
, $QV_1 = 0$, $QV_{12} = s_{12} V_1 V_2$,...

ullet Corresponding Berends–Giele current $\mathcal{V}_B \equiv M_B$ satisfies

$$M_B \equiv \lambda^{\alpha} \mathcal{A}_{\alpha}^B, \quad QM_B = \sum_{XY=B} M_X M_Y$$

- ullet BG current M_B has well-defined kinematic poles, eg $M_{12}=V_{12}/s_{12}$
- Tree amplitudes characterized by its poles too
- Can we guess the mapping between M_B and tree amplitudes?
- Is there a fundamental principle guiding this construction?

FT tree amplitudes from BRST invariance

- Guess FT amplitudes from BRST invariance!
- Cubic graph organization of tree-level amplitudes (BCJ '08)

$$A_{\mathrm{YM}}(1,2,\ldots,N) = \sum_{i} \frac{n_{i}}{\prod_{\alpha_{i}} p_{\alpha_{i}}^{2}}$$

- Propagators contain only Mandelstam invariants
- BRST principle: assemble the kinematic building blocks M_B such that expression is in the BRST cohomology and contains correct kinematic poles

$$QA(1,2,3,...,n) = 0, \quad A(1,2,3,...,n) \neq Q(something)$$

ullet Each term of Qn_i must have a factor of P_{lpha_i}

◆ロト ◆回 ト ◆ 直 ト ◆ 直 ・ り へ ②

Tree-level FT amplitudes

$$\mathcal{A}_{5}(1,2,3,4,5) = \begin{array}{c} 2 & 3 & 4 \\ & & \\ 1 & & \\ 1 & & \\ & &$$

Expressions in the BRST cohomology with correct kinematic poles

$$\mathcal{A}_{5}(1,2,3,4,5) = \langle M_{12}M_{3}M_{45} \rangle + \operatorname{cyclic}(12345)$$

Can also write as

$$\mathcal{A}_5(1,2,3,4,5) = \langle (M_{123}M_4 + M_{12}M_{34} + M_1M_{234})M_5 \rangle$$

BRST closed object

$$E_{1234} \equiv M_{123}M_4 + M_{12}M_{34} + M_1M_{234}, \quad E_{1234} = QM_{1234}$$

Generalizes to N-pts!

PSS cohomology and FT amplitudes

(C.M., Schlotterer, Stieberger, Tsimpis, '10)

N-point color-ordered SYM tree amplitudes

$$A_n(1,2,\ldots,n)=\langle E_{123\ldots(n-1)}M_n\rangle$$

$$E_B \equiv \sum_{XY=B} M_X M_Y$$

Recall Berends–Giele formula (Berends, Giele '88)

$$A_{YM}(1,2,\ldots,n) = s_{123...n-1}J^m(12\ldots n-1)J_n^m$$

- ullet M_B plays the role of BG current J_B^m and E_B related to $s_BJ_B^m$
- PSS formula is the supersymmetric generalization of BG method
- BG current J_B^m is nothing more than the SYM superfield \mathcal{A}_B^m ! (in progress)

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 15 / 28

One-loop amplitudes, 5pts

- 5pt closed-string amplitude computed with the pure spinor formalism (Green, CM, Schlotterer '13)
- The OPE calculations give rise to three distinct kinematic building blocks: V_A , $T_{A,B,C}$ and $T^m_{A,B,C,D}$

$$T_{A,B,C} \equiv \frac{1}{3} (\lambda \gamma_m W_A) (\lambda \gamma_n W_B) F_C^{mn} + (C \leftrightarrow B, A)$$
$$T_{A,B,C,D}^m \equiv [T_{A,B,C} A_D^m + (D \leftrightarrow C, B, A)] + W_{A,B,C,D}^m$$

$$W_{A,B,C,D}^{m} \equiv \frac{1}{12} (\lambda \gamma_n W_A)(\lambda \gamma_p W_B)(W_C \gamma^{mnp} W_D) + (A, B|A, B, C, D)$$

• Multiparticle labels A, B, C, D

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

BRST variations of 1-loop building blocks

Scalar building blocks

$$\begin{split} &QT_{1,2,3}=0\\ &QT_{12,3,4}=s_{12}(V_1T_{2,3,4}-V_2T_{1,3,4})\\ &QT_{12,34,5}=s_{12}(V_1T_{2,34,5}-V_2T_{1,34,5})+s_{34}(V_3T_{12,4,5}-V_4T_{12,3,5}) \end{split}$$

Vector building blocks

$$QT_{1,2,3,4}^{m} = k_{1}^{m}V_{1}T_{2,3,4} + (1 \leftrightarrow 2,3,4)$$

$$QT_{12,3,4,5}^{m} = s_{12}(V_{1}T_{2,3,4,5}^{m} - V_{2}T_{1,3,4,5}^{m}) + k_{12}^{m}V_{12}T_{3,4,5}$$

$$+ [k_{3}^{m}V_{3}T_{12,4,5} + (3 \leftrightarrow 4,5)]$$

Nice algebraic structure (higher-point variations similar but omitted)

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 17 / 28

FT 1-loop amplitudes from BRST invariance

 Can we antecipate the FT integrands from BRST invariance like at tree-level?

$$A(1,2,3,\ldots,n) = \int \frac{d^D \ell}{(2\pi)^D} \langle A(1,2,3,\ldots,n|\ell) \rangle$$

Can also use cubic graphs organization at loop-level (BCJ '10)

$$A(1,2,3,\ldots,n|\ell) = \sum_{\Gamma_i} \frac{N_i(\ell)}{\prod_k P_{k,i}(\ell)}$$

- ullet In addition to Mandelstam propagators, also propagators with loop momentum ℓ^m
- BRST invariance principle: assemble the kinematic building blocks such that integrand is BRST closed

$$QA(1,2,3,...,n|\ell)=0$$

ullet Each term of $QN_i(\ell)$ must have a factor of $P_{k,i}(\ell)$

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 18 / 28

4-point 1-loop amplitude

• The 4-point 1-loop integrand is easy to write down

- not much choice of BRST invariants . . .
- String 4pt amplitude and $V_1T_{2,3,4}$ kinematics computed by Berkovits in 2004
- Later shown to reproduce standard t_8F^4 (+ fermions) (CM '05)

5-point 1-loop amplitude

5-point 1-loop integrand from BRST invariance (CM, Schlotterer '14)

$$A(1,2,3,4,5|\ell) = \underbrace{\begin{array}{c} 3 \\ 2 \\ \ell \end{array}}_{1} + \text{cyclic}(12345) + \underbrace{\begin{array}{c} 3 \\ 1 \\ \ell \end{array}}_{5} + \underbrace{\begin{array}{c} 3 \\ 4 \\ 5 \end{array}}_{5}$$

Split integrand accordingly

$$A(1,2,3,4,5|\ell) = A_{\rm box}(1,2,3,4,5) + A_{\rm pent}(1,2,3,4,5|\ell)$$

- Boxes independent of loop momentum, pentagon at most linear (N-4 powers in general)
- Mandelstam propagators in the boxes: this rings a Berends-Giele bell leading to the following ansatz

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < @

5pt boxes

ullet Leg number 1 treated differently due to fixed vertex position V_1 in 1-loop prescription

$$Q \frac{V_{12}}{s_{12}} = QM_{12} = M_1M_2$$

$$Q \frac{T_{23,4,5}}{s_{23}} = QM_{23,4,5} = M_2M_{3,4,5} - M_3M_{2,4,5}$$

$$\begin{split} A_{\text{box}}(1,2,3,4,5) &= \frac{V_{12}T_{3,4,5}}{(k_1+k_2)^2\ell^2(\ell-k_{12})^2(\ell-k_{123})^2(\ell-k_{1234})^2} \\ &+ \frac{V_1T_{23,4,5}}{(k_2+k_3)^2\ell^2(\ell-k_1)^2(\ell-k_{123})^2(\ell-k_{1234})^2} \\ &+ \frac{V_1T_{2,34,5}}{(k_3+k_4)^2\ell^2(\ell-k_1)^2(\ell-k_{12})^2(\ell-k_{1234})^2} \\ &+ \frac{V_1T_{2,3,45}}{(k_4+k_5)^2\ell^2(\ell-k_1)^2(\ell-k_{12})^2(\ell-k_{123})^2} \\ &+ \frac{V_5T_{2,3,4}}{(k_1+k_5)^2(\ell-k_1)^2(\ell-k_{12})^2(\ell-k_{123})^2(\ell-k_{1234})^2} \end{split}$$

- BRST variations cancel the Mandelstams in the denominators, leaving boxes of loop momentum factors
- Need a pentagon whose BRST variation cancel those surviving boxes

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 22 / 28

5pt pentagon

• Pentagon: vector (ℓ^m) and scalar (no loop momentum)

$$A_{\text{pent}}(1,2,3,4,5|\ell) = \frac{N_{1|2,3,4,5}^{(5)}(\ell)}{\ell^2(\ell-k_1)^2(\ell-k_{12})^2(\ell-k_{123})^2(\ell-k_{1234})^2}$$

PSS numerator

$$2N_{1|2,3,4,5}^{(5)}(\ell) \equiv (\ell_m + \ell_m - k_m^1)V_1T_{2,3,4,5}^m + \left[V_1T_{23,4,5} + (2,3|2,3,4,5)\right]$$

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 23 / 28

5pt pentagon

BRST principle: variation of numerator must cancel propagators

$$\begin{split} 2QN_{1|2,3,4,5}^{(5)}(\ell) &= V_1V_2T_{3,4,5}\big[(\ell-k_{12})^2 - (\ell-k_1)^2\big] \\ &+ V_1V_3T_{2,4,5}\big[(\ell-k_{123})^2 - (\ell-k_{12})^2\big] \\ &+ V_1V_4T_{2,3,5}\big[(\ell-k_{1234})^2 - (\ell-k_{123})^2\big] \\ &+ V_1V_5T_{2,3,4}\big[\ell^2 - (\ell-k_{1234})^2\big] \end{split}$$

- Turns out to cancel BRST variation of the boxes, overall 5pt integrand is BRST closed!
- All BCJ identities satisfied, eg

$$\langle N_{1|23,4,5}^{(4)} \rangle = \langle N_{1|2,3,4,5}^{(5)}(\ell) - N_{1|3,2,4,5}^{(5)}(\ell) \rangle$$

Two-loop amplitudes, 5pts

- 5pt closed-string amplitude computed with the (non-minimal) pure spinor formalism led to kinematic building blocks: $T_{A,B|C,D}$ and $T^m_{A,B,C|D,E}$ (Gomez, CM, Schlotterer '15)
- Minimal pure spinor representation (CM, Schlotterer '15)

$$T_{A,B|C,D} \equiv \frac{1}{64} (\lambda \gamma_{mnpqr} \lambda) F_A^{mn} F_B^{pq} \left[F_C^{rs} (\lambda \gamma_s W_D) + F_D^{rs} (\lambda \gamma_s W_C) \right] + (A, B)$$

$$T_{1,2,3|4,5}^m \equiv A_1^m T_{2,3|4,5} + A_2^m T_{1,3|4,5} + A_3^m T_{1,2|4,5} + W_{1,2,3|4,5}^m$$

$$W_{3,4,5|1,2}^{m} \equiv \frac{1}{48} (\lambda \gamma_{pq} \gamma^{m} W_{(1)} F_{2)}^{pq} (\lambda \gamma_{r} W_{5}) (\lambda \gamma_{s} W_{(3)} F_{4)}^{rs}$$

$$- \frac{1}{128} (\lambda \gamma^{m} W_{5}) (\lambda \gamma_{pq} \gamma^{r} W_{(1)} F_{2)}^{pq} (\lambda \gamma_{st} \gamma_{r} W_{(3)} F_{4)}^{st}$$

$$+ \frac{1}{96} (W_{3} \gamma^{mst} W_{4}) (\lambda \gamma_{npqrs} \lambda) (\lambda \gamma_{t} W_{5}) F_{1}^{np} F_{2}^{qr} + (5 \leftrightarrow 3, 4)$$

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 25 / 28

BRST variations of 2-loop building blocks

Scalar building blocks

$$\begin{split} QT_{1,2|3,4} &= 0 \\ QT_{12,3|4,5} &= s_{12}(V_1T_{2,3|4,5} - V_2T_{1,3|4,5}) \end{split}$$

Vector building blocks

$$QT_{1,2,3|4,5}^{m} = k_{1}^{m}V_{1}T_{2,3|4,5} + k_{2}^{m}V_{2}T_{1,3|4,5} + k_{3}^{m}V_{3}T_{1,2|4,5}$$

Essentially the same algebraic structure as before!

2-loop 5pt topologies

- BCJ identities: master diagram (a) (Carrasco, Johansson '11)
- PSS representation

$$2N_{1,2,3|4,5}^{(a)}(\ell) \equiv (\ell_m + \ell_m - k_m^{123})T_{1,2,3|4,5}^m + (T_{12,3|4,5} + T_{13,2|4,5} + T_{23,1|4,5})$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 勿 へ ②

2-loop 5-pt integrand

- BRST principle works exactly as before (CM, Schlotterer '15)
- Can assemble BRST-invariant 2-loop 5-pt integrand
- BCJ identities satisfied by construction, gravity amplitudes for free
- The solution for numerators look intuitive
- Hope to look for patterns allowing N-pt solution(?)