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Introduction and motivation

Since the discovery the pure spinor formalism many superstring
amplitudes have been computed with manifest supersymmetry

1 N-pts @ tree-level
2 N-pts @ 1-loop (low energy limit)
3 4- and 5-pts @ 2-loops (5pt: low energy limit)
4 4-pt @ 3-loops (low energy limit)

The α′ → 0 limit gives rise to field theory amplitudes

What can we say about FT amplitudes?

C.R. Mafra (DAMTP) FT amplitudes 16 June 2015 2 / 28



FT amplitudes from educated guesses

The idea is to antecipate how the result of taking the α′ → 0 limit
will look like

FT limit will be composed out of kinematics and propagators and
loop momentum integrals

The FT amplitude will be a BRST-invariant expression constructed
out of these elements

Strategy depends heavily on how much control we have over the
string results

Kinematics of string amplitudes given by pure spinor superspace
expressions
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SYM superfields in 10D (Witten ‘86)

Covariant description of D=10 SYM theory with superfields

Aα(x , θ), Am(x , θ), W α(x , θ), Fmn(x , θ)

Linearized EOMs

DαAβ + DβAα = γmαβAm, DαAm = (γmW )α + ∂mAα

DαW
β =

1

4
(γmn) β

α Fmn, DαFmn = ∂[m(γn]W )α

Well-known θα expansions:

Aα(x , θ) =
1

2
am(γmθ)α −

1

3
(χγmθ)(γmθ)α + · · ·

Am(x , θ) = am − (χγmθ) + · · ·

W α(x , θ) = χα − 1

4
(γmnθ)αfmn + · · ·

Fmn(x , θ) = fmn − 2(∂[mχγn]θ) + · · ·
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String tree-level amplitude

N-point prescription (Berkovits ‘00):

Atree = 〈V1V2V3

∫
U4. . .

∫
Un〉

where V and U are massless vertex operators

V = λαAα(x , θ), QV = 0

U = ∂θαAα + AmΠm + dαW
α +

1

2
NmnFmn, QU = ∂V

λα is the pure spinor satisfying (λγmλ) = 0

Q = λαDα is the BRST charge

The CFT computation of the tree-level correlator is usual

Use OPEs to integrate out non-zero modes of ∂θα, dα,Π
m and Nmn
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Pure Spinor Superspace

Surviving zero-modes of the pure spinor λα and θα integrated out
with the prescription

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1

PSS defined as expressions containing (λα, θα) such that 〈(λ3θ5)〉 = 1

Component expansions straightforward to compute

〈V1V2V3〉 = (e1 · e2)(k2 · e3) + e1
m(χ2γ

mχ3) + cyc(1, 2, 3)

PSS framework optimal to a BRST cohomology analysis of amplitudes
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Pure Spinor Superspace Cohomology

BRST charge Q = λαDα and SYM equations of motion are closely
related

DαAβ + DβAα = γmαβAm, DαAm = (γmW )α + ∂mAα

DαW
β =

1

4
(γmn) β

α Fmn, DαFmn = 2∂[m(γn]W )α

String amplitudes are expressions in the BRST cohomology of pure
spinor superspace

A3 = 〈V1V2V3〉 and Q(V1V2V3) = 0, V1V2V3 6= Q(Ω123)

Therefore the FT amplitudes must also be in the cohomology!

The vertex V alone is not enough, need some OPE technology for
pure spinor vertex operators
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Multiparticle SYM superfields (CM, Schlotterer ‘14, ‘15)

Recursive definition of multiparticle superfields

KB ∈ {AB
α , A

m
B , W

α
B , Fmn

B }

inspired by OPE computations

U1(z1)U2(z2) ∼ 1

z12

[
∂θαA12

α + A12
m Πm + dαW

α
12 +

1

2
NmnF 12

mn

]
U12(z2)U3(z3) ∼ 1

z23

[
∂θαA123

α + A123
m Πm + dαW

α
123 +

1

2
NmnF 123

mn

]
For example,

W α
12 =

1

4
(γmnW 2)αF 1

mn + W α
2 (k2 · A1)− (1↔ 2)

W α
123 = −(k12 · A3)W α

12 +
1

4
(γrsW 3)αF 12

rs − (12↔ 3)

+
1

2
(k1 · k2)

[
W α

2 (A1 · A3)− (1↔ 2)
]
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Multiparticle SYM superfields

The multiparticle superfields satisfy generalized SYM EOMs

DαW
β
1 =

1

4
(γmn)α

βF 1
mn

DαW
β
12 =

1

4
(γmn)α

βF 12
mn

+ (k1 · k2)(A1
αW

β
2 − A2

αW
β
1 )

DαW
β
123 =

1

4
(γmn)α

βF 123
mn

+ (k1 · k2)
[
A1
αW

β
23 + A13

α W β
2 − (1↔ 2)

]
+ (k12 · k3)

[
A12
α W β

3 − (12↔ 3)
]
,

and similarly for the other superfields AB
α ,A

m
B ,F

mn
B

Surprising and beautiful multiparticle structure hidden in SYM theory!
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Multiparticle symmetries

The superfields KB satisfy generalized Lie symmetries

0 = K12 + K21,

0 = K123 + K231 + K312, (Jacobi identity)

0 = K1234 − K1243 + K3412 − K3421

0 = general formula known

These are the same symmetries obeyed by nested commutators

Can make symmetries manifest in the notation

K12 → K[1,2], K123 → K[[1,2],3], K1234 → K[[[1,2],3],4] . . .
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Berends–Giele currents

Define new superfields

KB ∈ {AB
α ,Am

B ,Wα
B ,Fmn

B }

from all binary trees (Catalan # ) dressed with propagators and KB

Satisfy simple EOMs for general multiparticle label, e.g.{
Dα,Wβ

B

}
= 1

4 (γmn)α
βFB

mn +
∑

XY=B

(
AX
αW

β
Y −A

Y
αW

β
X

)
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Towards FT tree amplitudes

String OPE computations at tree-level can be written using only the
multiparticle unintegrated vertex

VB = λαAB
α , QV1 = 0, QV12 = s12V1V2, . . .

Corresponding Berends–Giele current VB ≡ MB satisfies

MB ≡ λαAB
α , QMB =

∑
XY=B

MXMY

BG current MB has well-defined kinematic poles, eg M12 = V12/s12

Tree amplitudes characterized by its poles too

Can we guess the mapping between MB and tree amplitudes?

Is there a fundamental principle guiding this construction?
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FT tree amplitudes from BRST invariance

Guess FT amplitudes from BRST invariance!

Cubic graph organization of tree-level amplitudes (BCJ ‘08)

AYM(1, 2, . . . ,N) =
∑
i

ni∏
αi
p2
αi

Propagators contain only Mandelstam invariants

BRST principle: assemble the kinematic building blocks MB such that
expression is in the BRST cohomology and contains correct kinematic
poles

QA(1, 2, 3, . . . , n) = 0, A(1, 2, 3, . . . , n) 6= Q(something)

Each term of Qni must have a factor of Pαi
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Tree-level FT amplitudes

A5(1, 2, 3, 4, 5) =

2

1

s12

3

s45

4

5

+ cyclic(12345)

Expressions in the BRST cohomology with correct kinematic poles

A5(1, 2, 3, 4, 5) = 〈M12M3M45〉+ cyclic(12345)

Can also write as

A5(1, 2, 3, 4, 5) = 〈(M123M4 + M12M34 + M1M234)M5〉

BRST closed object

E1234 ≡ M123M4 + M12M34 + M1M234, E1234 = QM1234

Generalizes to N-pts!
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PSS cohomology and FT amplitudes

(C.M., Schlotterer, Stieberger,Tsimpis, ‘10)

N-point color-ordered SYM tree amplitudes

An(1, 2, . . . , n) = 〈E123...(n−1)Mn〉

EB ≡
∑

XY=B

MXMY

Recall Berends–Giele formula (Berends, Giele ‘88)

AYM(1, 2, . . . , n) = s123...n−1J
m(12 . . . n − 1)Jmn

MB plays the role of BG current JmB and EB related to sBJ
m
B

PSS formula is the supersymmetric generalization of BG method

BG current JmB is nothing more than the SYM superfield Am
B ! (in

progress)
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One-loop amplitudes, 5pts

5pt closed-string amplitude computed with the pure spinor formalism
(Green, CM, Schlotterer ‘13)

The OPE calculations give rise to three distinct kinematic building
blocks: VA, TA,B,C and Tm

A,B,C ,D

TA,B,C ≡
1

3
(λγmWA)(λγnWB)Fmn

C + (C ↔ B,A)

Tm
A,B,C ,D ≡

[
TA,B,CA

m
D + (D ↔ C ,B,A)

]
+ Wm

A,B,C ,D

Wm
A,B,C ,D ≡

1

12
(λγnWA)(λγpWB)(WCγ

mnpWD) + (A,B|A,B,C ,D)

Multiparticle labels A, B, C, D
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BRST variations of 1-loop building blocks

Scalar building blocks

QT1,2,3 = 0

QT12,3,4 = s12(V1T2,3,4 − V2T1,3,4)

QT12,34,5 = s12(V1T2,34,5 − V2T1,34,5) + s34(V3T12,4,5 − V4T12,3,5)

Vector building blocks

QTm
1,2,3,4 = km1 V1T2,3,4 + (1↔ 2, 3, 4)

QTm
12,3,4,5 = s12(V1T

m
2,3,4,5 − V2T

m
1,3,4,5) + km12V12T3,4,5

+
[
km3 V3T12,4,5 + (3↔ 4, 5)

]
Nice algebraic structure (higher-point variations similar but omitted)
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FT 1-loop amplitudes from BRST invariance

Can we antecipate the FT integrands from BRST invariance like at
tree-level?

A(1, 2, 3, . . . , n) =

∫
dD`

(2π)D
〈A(1, 2, 3, . . . , n|`)〉

Can also use cubic graphs organization at loop-level (BCJ ‘10)

A(1, 2, 3, . . . , n|`) =
∑

Γi

Ni (`)∏
k Pk,i (`)

In addition to Mandelstam propagators, also propagators with loop
momentum `m

BRST invariance principle: assemble the kinematic building blocks
such that integrand is BRST closed

QA(1, 2, 3, . . . , n|`) = 0

Each term of QNi (`) must have a factor of Pk,i (`)
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4-point 1-loop amplitude

The 4-point 1-loop integrand is easy to write down

A(1, 2, 3, 4|`) =
V1T2,3,4

`2(`− k1)2(`− k12)2(`− k123)2
.

not much choice of BRST invariants . . .

String 4pt amplitude and V1T2,3,4 kinematics computed by Berkovits
in 2004

Later shown to reproduce standard t8F
4 (+ fermions) (CM ‘05)
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5-point 1-loop amplitude

5-point 1-loop integrand from BRST invariance (CM, Schlotterer ‘14)

Split integrand accordingly

A(1, 2, 3, 4, 5|`) = Abox(1, 2, 3, 4, 5) + Apent(1, 2, 3, 4, 5|`)

Boxes independent of loop momentum, pentagon at most linear
(N − 4 powers in general)

Mandelstam propagators in the boxes: this rings a Berends–Giele bell
leading to the following ansatz
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5pt boxes

Leg number 1 treated differently due to fixed vertex position V1 in
1-loop prescription

Q
V12

s12
= QM12 = M1M2

Q
T23,4,5

s23
= QM23,4,5 = M2M3,4,5 −M3M2,4,5
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5pt boxes

Abox(1, 2, 3, 4, 5) =
V12T3,4,5

(k1 + k2)2`2(`− k12)2(`− k123)2(`− k1234)2

+
V1T23,4,5

(k2 + k3)2`2(`− k1)2(`− k123)2(`− k1234)2

+
V1T2,34,5

(k3 + k4)2`2(`− k1)2(`− k12)2(`− k1234)2

+
V1T2,3,45

(k4 + k5)2`2(`− k1)2(`− k12)2(`− k123)2

+
V51T2,3,4

(k1 + k5)2(`− k1)2(`− k12)2(`− k123)2(`− k1234)2

BRST variations cancel the Mandelstams in the denominators, leaving
boxes of loop momentum factors

Need a pentagon whose BRST variation cancel those surviving boxes
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5pt pentagon

Pentagon: vector (`m ) and scalar (no loop momentum)

`1 5

2 4

3

Apent(1, 2, 3, 4, 5|`) =
N

(5)
1|2,3,4,5(`)

`2(`− k1)2(`− k12)2(`− k123)2(`− k1234)2

PSS numerator

2N
(5)
1|2,3,4,5(`) ≡ (`m + `m − k1

m)V1T
m
2,3,4,5 +

[
V1T23,4,5 + (2, 3|2, 3, 4, 5)

]
.
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5pt pentagon

BRST principle: variation of numerator must cancel propagators

2QN
(5)
1|2,3,4,5(`) = V1V2T3,4,5

[
(`− k12)2 − (`− k1)2

]
+ V1V3T2,4,5

[
(`− k123)2 − (`− k12)2

]
+ V1V4T2,3,5

[
(`− k1234)2 − (`− k123)2

]
+ V1V5T2,3,4

[
`2 − (`− k1234)2

]
Turns out to cancel BRST variation of the boxes, overall 5pt
integrand is BRST closed!

All BCJ identities satisfied, eg

〈N(4)
1|23,4,5〉 = 〈N(5)

1|2,3,4,5(`)− N
(5)
1|3,2,4,5(`)〉
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Two-loop amplitudes, 5pts

5pt closed-string amplitude computed with the (non-minimal) pure
spinor formalism led to kinematic building blocks: TA,B|C ,D and
Tm
A,B,C |D,E (Gomez, CM, Schlotterer ‘15)

Minimal pure spinor representation (CM, Schlotterer ‘15)

TA,B|C ,D ≡
1

64
(λγmnpqrλ)Fmn

A F pq
B

[
F rs
C (λγsWD) + F rs

D (λγsWC )
]

+ (A,B ↔ C ,D)

Tm
1,2,3|4,5 ≡ Am

1 T2,3|4,5 + Am
2 T1,3|4,5 + Am

3 T1,2|4,5 + Wm
1,2,3|4,5

Wm
3,4,5|1,2 ≡

1

48
(λγpqγ

mW(1)F pq
2) (λγrW5)(λγsW(3)F rs

4)

− 1

128
(λγmW5)(λγpqγ

rW(1)F pq
2) (λγstγrW(3)F st

4)

+
1

96
(W3γ

mstW4)(λγnpqrsλ)(λγtW5)F np
1 F qr

2 + (5↔ 3, 4)
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BRST variations of 2-loop building blocks

Scalar building blocks

QT1,2|3,4 = 0

QT12,3|4,5 = s12(V1T2,3|4,5 − V2T1,3|4,5)

Vector building blocks

QTm
1,2,3|4,5 = km1 V1T2,3|4,5 + km2 V2T1,3|4,5 + km3 V3T1,2|4,5

Essentially the same algebraic structure as before!
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2-loop 5pt topologies

BCJ identities: master diagram (a) (Carrasco, Johansson ‘11)

PSS representation

2N
(a)
1,2,3|4,5(`) ≡ (`m+`m−k123

m )Tm
1,2,3|4,5+(T12,3|4,5+T13,2|4,5+T23,1|4,5)
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2-loop 5-pt integrand

BRST principle works exactly as before (CM, Schlotterer ‘15)

Can assemble BRST-invariant 2-loop 5-pt integrand

BCJ identities satisfied by construction, gravity amplitudes for free

The solution for numerators look intuitive

Hope to look for patterns allowing N-pt solution(?)
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