Field theory amplitudes from the pure spinor superstring

Carlos R. Mafra

(In collaboration with Oliver Schlotterer)

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Introduction and motivation

- Since the discovery the pure spinor formalism many superstring amplitudes have been computed with manifest supersymmetry
(1) N-pts © tree-level
(2) N -pts © 1-loop (low energy limit)
(3) 4- and 5-pts @ 2-loops (5pt: low energy limit)
(9) 4-pt @ 3-loops (low energy limit)
- The $\alpha^{\prime} \rightarrow 0$ limit gives rise to field theory amplitudes
- What can we say about FT amplitudes?

FT amplitudes from educated guesses

- The idea is to antecipate how the result of taking the $\alpha^{\prime} \rightarrow 0$ limit will look like
- FT limit will be composed out of kinematics and propagators and loop momentum integrals
- The FT amplitude will be a BRST-invariant expression constructed out of these elements
- Strategy depends heavily on how much control we have over the string results
- Kinematics of string amplitudes given by pure spinor superspace expressions

SYM superfields in 10D (Witten '86)

- Covariant description of $D=10$ SYM theory with superfields

$$
A_{\alpha}(x, \theta), A_{m}(x, \theta), W^{\alpha}(x, \theta), F_{m n}(x, \theta)
$$

- Linearized EOMs

$$
\begin{gathered}
D_{\alpha} A_{\beta}+D_{\beta} A_{\alpha}=\gamma_{\alpha \beta}^{m} A_{m}, \quad D_{\alpha} A_{m}=\left(\gamma_{m} W\right)_{\alpha}+\partial_{m} A_{\alpha} \\
D_{\alpha} W^{\beta}=\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} F_{m n}, \quad D_{\alpha} F_{m n}=\partial_{[m}\left(\gamma_{n]} W\right)_{\alpha}
\end{gathered}
$$

- Well-known θ^{α} expansions:

$$
\begin{aligned}
A_{\alpha}(x, \theta) & =\frac{1}{2} a_{m}\left(\gamma^{m} \theta\right)_{\alpha}-\frac{1}{3}\left(\chi \gamma_{m} \theta\right)\left(\gamma^{m} \theta\right)_{\alpha}+\cdots \\
A_{m}(x, \theta) & =a_{m}-\left(\chi \gamma_{m} \theta\right)+\cdots \\
W^{\alpha}(x, \theta) & =\chi^{\alpha}-\frac{1}{4}\left(\gamma^{m n} \theta\right)^{\alpha} f_{m n}+\cdots \\
F_{m n}(x, \theta) & =f_{m n}-2\left(\partial_{[m} \chi \gamma_{n]} \theta\right)+\cdots
\end{aligned}
$$

String tree-level amplitude

- N-point prescription (Berkovits '00):

$$
\mathcal{A}_{\text {tree }}=\left\langle V_{1} V_{2} V_{3} \int U_{4} \ldots \int U_{n}\right\rangle
$$

- where V and U are massless vertex operators

$$
\begin{aligned}
& V=\lambda^{\alpha} A_{\alpha}(x, \theta), \quad Q V=0 \\
& U=\partial \theta^{\alpha} A_{\alpha}+A_{m} \Pi^{m}+d_{\alpha} W^{\alpha}+\frac{1}{2} N^{m n} F_{m n}, \quad Q U=\partial V
\end{aligned}
$$

- λ^{α} is the pure spinor satisfying $\left(\lambda \gamma^{m} \lambda\right)=0$
- $Q=\lambda^{\alpha} D_{\alpha}$ is the BRST charge
- The CFT computation of the tree-level correlator is usual
- Use OPEs to integrate out non-zero modes of $\partial \theta^{\alpha}, d_{\alpha}, \Pi^{m}$ and $N^{m n}$

Pure Spinor Superspace

- Surviving zero-modes of the pure spinor λ^{α} and θ^{α} integrated out with the prescription

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle=1
$$

- PSS defined as expressions containing $\left(\lambda^{\alpha}, \theta^{\alpha}\right)$ such that $\left\langle\left(\lambda^{3} \theta^{5}\right)\right\rangle=1$
- Component expansions straightforward to compute

$$
\left\langle V_{1} V_{2} V_{3}\right\rangle=\left(e^{1} \cdot e^{2}\right)\left(k^{2} \cdot e^{3}\right)+e_{m}^{1}\left(\chi_{2} \gamma^{m} \chi_{3}\right)+\operatorname{cyc}(1,2,3)
$$

- PSS framework optimal to a BRST cohomology analysis of amplitudes

Pure Spinor Superspace Cohomology

- BRST charge $Q=\lambda^{\alpha} D_{\alpha}$ and SYM equations of motion are closely related

$$
\begin{array}{ll}
D_{\alpha} A_{\beta}+D_{\beta} A_{\alpha}=\gamma_{\alpha \beta}^{m} A_{m}, & D_{\alpha} A_{m}=\left(\gamma_{m} W\right)_{\alpha}+\partial_{m} A_{\alpha} \\
D_{\alpha} W^{\beta}=\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} \mathcal{F}_{m n}, & D_{\alpha} \mathcal{F}_{m n}=2 \partial_{[m}\left(\gamma_{n]} W\right)_{\alpha}
\end{array}
$$

- String amplitudes are expressions in the BRST cohomology of pure spinor superspace

$$
\mathcal{A}_{3}=\left\langle V_{1} V_{2} V_{3}\right\rangle \text { and } Q\left(V_{1} V_{2} V_{3}\right)=0, \quad V_{1} V_{2} V_{3} \neq Q\left(\Omega_{123}\right)
$$

- Therefore the FT amplitudes must also be in the cohomology!
- The vertex V alone is not enough, need some OPE technology for pure spinor vertex operators

Multiparticle SYM superfields (CM, Schlotterer '14, '15)

- Recursive definition of multiparticle superfields

$$
K_{B} \in\left\{A_{\alpha}^{B}, A_{B}^{m}, W_{B}^{\alpha}, \mathcal{F}_{B}^{m n}\right\}
$$

inspired by OPE computations

$$
\begin{aligned}
U^{1}\left(z_{1}\right) U^{2}\left(z_{2}\right) & \sim \frac{1}{z_{12}}\left[\partial \theta^{\alpha} A_{\alpha}^{12}+A_{m}^{12} \Pi^{m}+d_{\alpha} W_{12}^{\alpha}+\frac{1}{2} N^{m n} F_{m n}^{12}\right] \\
U^{12}\left(z_{2}\right) U^{3}\left(z_{3}\right) & \sim \frac{1}{z_{23}}\left[\partial \theta^{\alpha} A_{\alpha}^{123}+A_{m}^{123} \Pi^{m}+d_{\alpha} W_{123}^{\alpha}+\frac{1}{2} N^{m n} F_{m n}^{123}\right]
\end{aligned}
$$

- For example,

$$
\begin{aligned}
W_{12}^{\alpha}= & \frac{1}{4}\left(\gamma^{m n} W^{2}\right)^{\alpha} F_{m n}^{1}+W_{2}^{\alpha}\left(k^{2} \cdot A^{1}\right)-(1 \leftrightarrow 2) \\
W_{123}^{\alpha}= & -\left(k^{12} \cdot A^{3}\right) W_{12}^{\alpha}+\frac{1}{4}\left(\gamma^{r s} W^{3}\right)^{\alpha} F_{r s}^{12}-(12 \leftrightarrow 3) \\
& +\frac{1}{2}\left(k^{1} \cdot k^{2}\right)\left[W_{2}^{\alpha}\left(A^{1} \cdot A^{3}\right)-(1 \leftrightarrow 2)\right]
\end{aligned}
$$

Multiparticle SYM superfields

- The multiparticle superfields satisfy generalized SYM EOMs

$$
\begin{aligned}
D_{\alpha} W_{1}^{\beta}= & \frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} F_{m n}^{1} \\
D_{\alpha} W_{12}^{\beta}= & \frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} F_{m n}^{12} \\
& +\left(k^{1} \cdot k^{2}\right)\left(A_{\alpha}^{1} W_{2}^{\beta}-A_{\alpha}^{2} W_{1}^{\beta}\right) \\
D_{\alpha} W_{123}^{\beta}= & \frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} F_{m n}^{123} \\
& +\left(k^{1} \cdot k^{2}\right)\left[A_{\alpha}^{1} W_{23}^{\beta}+A_{\alpha}^{13} W_{2}^{\beta}-(1 \leftrightarrow 2)\right] \\
& +\left(k^{12} \cdot k^{3}\right)\left[A_{\alpha}^{12} W_{3}^{\beta}-(12 \leftrightarrow 3)\right]
\end{aligned}
$$

- and similarly for the other superfields $A_{\alpha}^{B}, A_{B}^{m}, F_{B}^{m n}$
- Surprising and beautiful multiparticle structure hidden in SYM theory!

Multiparticle symmetries

- The superfields K_{B} satisfy generalized Lie symmetries

$$
\begin{aligned}
& 0=K_{12}+K_{21}, \\
& 0=K_{123}+K_{231}+K_{312}, \quad(\text { Jacobi identity }) \\
& 0=K_{1234}-K_{1243}+K_{3412}-K_{3421} \\
& 0=\text { general formula known }
\end{aligned}
$$

- These are the same symmetries obeyed by nested commutators
- Can make symmetries manifest in the notation

$$
K_{12} \rightarrow K_{[1,2]}, \quad K_{123} \rightarrow K_{[[1,2], 3]}, \quad K_{1234} \rightarrow K_{[[1,2], 3], 4]} \cdots
$$

Berends-Giele currents

- Define new superfields

$$
\mathcal{K}_{B} \in\left\{\mathcal{A}_{\alpha}^{B}, \mathcal{A}_{B}^{m}, \mathcal{W}_{B}^{\alpha}, \mathcal{F}_{B}^{m n}\right\}
$$

from all binary trees (Catalan \#) dressed with propagators and K_{B}

- Satisfy simple EOMs for general multiparticle label, e.g.

$$
\left\{D_{\alpha}, \mathcal{W}_{B}^{\beta}\right\}=\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} \mathcal{F}_{m n}^{B}+\sum_{X Y=B}\left(\mathcal{A}_{\alpha}^{X} \mathcal{W}_{Y}^{\beta}-\mathcal{A}_{\alpha}^{Y} \mathcal{W}_{X}^{\beta}\right)
$$

Towards FT tree amplitudes

- String OPE computations at tree-level can be written using only the multiparticle unintegrated vertex

$$
V_{B}=\lambda^{\alpha} A_{\alpha}^{B}, \quad Q V_{1}=0, \quad Q V_{12}=s_{12} V_{1} V_{2}, \ldots
$$

- Corresponding Berends-Giele current $\mathcal{V}_{B} \equiv M_{B}$ satisfies

$$
M_{B} \equiv \lambda^{\alpha} \mathcal{A}_{\alpha}^{B}, \quad Q M_{B}=\sum_{X Y=B} M_{X} M_{Y}
$$

- BG current M_{B} has well-defined kinematic poles, eg $M_{12}=V_{12} / s_{12}$
- Tree amplitudes characterized by its poles too
- Can we guess the mapping between M_{B} and tree amplitudes?
- Is there a fundamental principle guiding this construction?

FT tree amplitudes from BRST invariance

- Guess FT amplitudes from BRST invariance!
- Cubic graph organization of tree-level amplitudes (BCJ ‘08)

$$
A_{\mathrm{YM}}(1,2, \ldots, N)=\sum_{i} \frac{n_{i}}{\prod_{\alpha_{i}} p_{\alpha_{i}}^{2}}
$$

- Propagators contain only Mandelstam invariants
- BRST principle: assemble the kinematic building blocks M_{B} such that expression is in the BRST cohomology and contains correct kinematic poles

$$
Q A(1,2,3, \ldots, n)=0, \quad A(1,2,3, \ldots, n) \neq Q(\text { something })
$$

- Each term of $Q n_{i}$ must have a factor of $P_{\alpha_{i}}$

Tree-level FT amplitudes

$$
\mathcal{A}_{5}(1,2,3,4,5)=\sum_{1}^{2}
$$

- Expressions in the BRST cohomology with correct kinematic poles

$$
\mathcal{A}_{5}(1,2,3,4,5)=\left\langle M_{12} M_{3} M_{45}\right\rangle+\operatorname{cyclic}(12345)
$$

- Can also write as

$$
\mathcal{A}_{5}(1,2,3,4,5)=\left\langle\left(M_{123} M_{4}+M_{12} M_{34}+M_{1} M_{234}\right) M_{5}\right\rangle
$$

- BRST closed object

$$
E_{1234} \equiv M_{123} M_{4}+M_{12} M_{34}+M_{1} M_{234}, \quad E_{1234}=Q M_{1234}
$$

- Generalizes to N-pts!

PSS cohomology and FT amplitudes

(C.M., Schlotterer, Stieberger,Tsimpis, '10)

N-point color-ordered SYM tree amplitudes

$$
A_{n}(1,2, \ldots, n)=\left\langle E_{123 \ldots(n-1)} M_{n}\right\rangle
$$

$$
E_{B} \equiv \sum_{X Y=B} M_{X} M_{Y}
$$

- Recall Berends-Giele formula (Berends, Giele '88)

$$
A_{\mathrm{YM}}(1,2, \ldots, n)=s_{123 \ldots n-1} J^{m}(12 \ldots n-1) J_{n}^{m}
$$

- M_{B} plays the role of $B G$ current J_{B}^{m} and E_{B} related to $s_{B} J_{B}^{m}$
- PSS formula is the supersymmetric generalization of $B G$ method
- BG current J_{B}^{m} is nothing more than the SYM superfield \mathcal{A}_{B}^{m} ! (in progress)

One-loop amplitudes, 5pts

- 5pt closed-string amplitude computed with the pure spinor formalism (Green, CM, Schlotterer '13)
- The OPE calculations give rise to three distinct kinematic building blocks: $V_{A}, T_{A, B, C}$ and $T_{A, B, C, D}^{m}$

$$
\begin{gathered}
T_{A, B, C} \equiv \frac{1}{3}\left(\lambda \gamma_{m} W_{A}\right)\left(\lambda \gamma_{n} W_{B}\right) F_{C}^{m n}+(C \leftrightarrow B, A) \\
T_{A, B, C, D}^{m} \equiv\left[T_{A, B, C} A_{D}^{m}+(D \leftrightarrow C, B, A)\right]+W_{A, B, C, D}^{m} \\
W_{A, B, C, D}^{m} \equiv \frac{1}{12}\left(\lambda \gamma_{n} W_{A}\right)\left(\lambda \gamma_{p} W_{B}\right)\left(W_{C} \gamma^{m n p} W_{D}\right)+(A, B \mid A, B, C, D)
\end{gathered}
$$

- Multiparticle labels $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

BRST variations of 1-loop building blocks

- Scalar building blocks

$$
\begin{aligned}
Q T_{1,2,3} & =0 \\
Q T_{12,3,4} & =s_{12}\left(V_{1} T_{2,3,4}-V_{2} T_{1,3,4}\right) \\
Q T_{12,34,5} & =s_{12}\left(V_{1} T_{2,34,5}-V_{2} T_{1,34,5}\right)+s_{34}\left(V_{3} T_{12,4,5}-V_{4} T_{12,3,5}\right)
\end{aligned}
$$

- Vector building blocks

$$
\begin{aligned}
Q T_{1,2,3,4}^{m}= & k_{1}^{m} V_{1} T_{2,3,4}+(1 \leftrightarrow 2,3,4) \\
Q T_{12,3,4,5}^{m}= & s_{12}\left(V_{1} T_{2,3,4,5}^{m}-V_{2} T_{1,3,4,5}^{m}\right)+k_{12}^{m} V_{12} T_{3,4,5} \\
& +\left[k_{3}^{m} V_{3} T_{12,4,5}+(3 \leftrightarrow 4,5)\right]
\end{aligned}
$$

- Nice algebraic structure (higher-point variations similar but omitted)

FT 1-loop amplitudes from BRST invariance

- Can we antecipate the FT integrands from BRST invariance like at tree-level?

$$
A(1,2,3, \ldots, n)=\int \frac{d^{D} \ell}{(2 \pi)^{D}}\langle A(1,2,3, \ldots, n \mid \ell)\rangle
$$

- Can also use cubic graphs organization at loop-level (BCJ '10)

$$
A(1,2,3, \ldots, n \mid \ell)=\sum_{\Gamma_{i}} \frac{N_{i}(\ell)}{\prod_{k} P_{k, i}(\ell)}
$$

- In addition to Mandelstam propagators, also propagators with loop momentum ℓ^{m}
- BRST invariance principle: assemble the kinematic building blocks such that integrand is BRST closed

$$
Q A(1,2,3, \ldots, n \mid \ell)=0
$$

- Each term of $Q N_{i}(\ell)$ must have a factor of $P_{k, i}(\ell)$

4-point 1-loop amplitude

- The 4-point 1-loop integrand is easy to write down

$$
\begin{gathered}
A(1,2,3,4 \mid \ell)=V_{1}^{2} \\
A(1,2,3,4 \mid \ell)=\frac{V_{2,3,4}}{\ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{123}\right)^{2}} .
\end{gathered}
$$

- not much choice of BRST invariants...
- String 4pt amplitude and $V_{1} T_{2,3,4}$ kinematics computed by Berkovits in 2004
- Later shown to reproduce standard $t_{8} F^{4}$ (+ fermions) (CM '05)

5-point 1-loop amplitude

- 5-point 1-loop integrand from BRST invariance (CM, Schlotterer '14)

- Split integrand accordingly

$$
A(1,2,3,4,5 \mid \ell)=A_{\text {box }}(1,2,3,4,5)+A_{\text {pent }}(1,2,3,4,5 \mid \ell)
$$

- Boxes independent of loop momentum, pentagon at most linear ($N-4$ powers in general)
- Mandelstam propagators in the boxes: this rings a Berends-Giele bell leading to the following ansatz

5pt boxes

- Leg number 1 treated differently due to fixed vertex position V_{1} in 1-loop prescription

$$
\begin{aligned}
Q \frac{V_{12}}{s_{12}} & =Q M_{12}=M_{1} M_{2} \\
Q \frac{T_{23,4,5}}{s_{23}} & =Q M_{23,4,5}=M_{2} M_{3,4,5}-M_{3} M_{2,4,5}
\end{aligned}
$$

5pt boxes

$$
\begin{aligned}
A_{\text {box }}(1,2,3,4,5) & =\frac{V_{12} T_{3,4,5}}{\left(k_{1}+k_{2}\right)^{2} \ell^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{123}\right)^{2}\left(\ell-k_{1234}\right)^{2}} \\
& +\frac{V_{1} T_{23,4,5}}{\left(k_{2}+k_{3}\right)^{2} \ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{123}\right)^{2}\left(\ell-k_{1234}\right)^{2}} \\
& +\frac{V_{1} T_{2,34,5}}{\left(k_{3}+k_{4}\right)^{2} \ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{1234}\right)^{2}} \\
& +\frac{V_{1} T_{2,3,45}}{\left(k_{4}+k_{5}\right)^{2} \ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{123}\right)^{2}} \\
& +\frac{V_{51} T_{2,3,4}}{\left(k_{1}+k_{5}\right)^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{123}\right)^{2}\left(\ell-k_{1234}\right)^{2}}
\end{aligned}
$$

- BRST variations cancel the Mandelstams in the denominators, leaving boxes of loop momentum factors
- Need a pentagon whose BRST variation cancel those surviving boxes

5pt pentagon

- Pentagon: vector $\left(\ell^{m}\right)$ and scalar (no loop momentum)

$$
A_{\text {pent }}(1,2,3,4,5 \mid \ell)=\frac{N_{1 \mid 2,3,4,5}^{(5)}(\ell)}{\ell^{2}\left(\ell-k_{1}\right)^{2}\left(\ell-k_{12}\right)^{2}\left(\ell-k_{123}\right)^{2}\left(\ell-k_{1234}\right)^{2}}
$$

- PSS numerator
$2 N_{1 \mid 2,3,4,5}^{(5)}(\ell) \equiv\left(\ell_{m}+\ell_{m}-k_{m}^{1}\right) V_{1} T_{2,3,4,5}^{m}+\left[V_{1} T_{23,4,5}+(2,3 \mid 2,3,4,5)\right]$

5pt pentagon

- BRST principle: variation of numerator must cancel propagators

$$
\begin{aligned}
2 Q N_{1 \mid 2,3,4,5}^{(5)}(\ell) & =V_{1} V_{2} T_{3,4,5}\left[\left(\ell-k_{12}\right)^{2}-\left(\ell-k_{1}\right)^{2}\right] \\
& +V_{1} V_{3} T_{2,4,5}\left[\left(\ell-k_{123}\right)^{2}-\left(\ell-k_{12}\right)^{2}\right] \\
& +V_{1} V_{4} T_{2,3,5}\left[\left(\ell-k_{1234}\right)^{2}-\left(\ell-k_{123}\right)^{2}\right] \\
& +V_{1} V_{5} T_{2,3,4}\left[\ell^{2}-\left(\ell-k_{1234}\right)^{2}\right]
\end{aligned}
$$

- Turns out to cancel BRST variation of the boxes, overall 5 pt integrand is BRST closed!
- All BCJ identities satisfied, eg

$$
\left\langle N_{1 \mid 23,4,5}^{(4)}\right\rangle=\left\langle N_{1 \mid 2,3,4,5}^{(5)}(\ell)-N_{1 \mid 3,2,4,5}^{(5)}(\ell)\right\rangle
$$

Two-loop amplitudes, 5pts

- 5pt closed-string amplitude computed with the (non-minimal) pure spinor formalism led to kinematic building blocks: $T_{A, B \mid C, D}$ and $T_{A, B, C \mid D, E}^{m}$ (Gomez, CM, Schlotterer '15)
- Minimal pure spinor representation (CM, Schlotterer '15)

$$
\begin{aligned}
T_{A, B \mid C, D} & \equiv \frac{1}{64}\left(\lambda \gamma_{m n p q r} \lambda\right) F_{A}^{m n} F_{B}^{p q}\left[F_{C}^{r s}\left(\lambda \gamma_{s} W_{D}\right)+F_{D}^{r s}\left(\lambda \gamma_{s} W_{C}\right)\right]+(A, B \\
T_{1,2,3 \mid 4,5}^{m} & \equiv A_{1}^{m} T_{2,3 \mid 4,5}+A_{2}^{m} T_{1,3 \mid 4,5}+A_{3}^{m} T_{1,2 \mid 4,5}+W_{1,2,3 \mid 4,5}^{m} \\
W_{3,4,5 \mid 1,2}^{m} & \equiv \frac{1}{48}\left(\lambda \gamma_{p q} \gamma^{m} W_{(1)}\right) F_{2)}^{p q}\left(\lambda \gamma_{r} W_{5}\right)\left(\lambda \gamma_{s} W_{(3}\right) F_{4)}^{r s} \\
& -\frac{1}{128}\left(\lambda \gamma^{m} W_{5}\right)\left(\lambda \gamma_{p q} \gamma^{r} W_{(1}\right) F_{2)}^{p q}\left(\lambda \gamma_{s t} \gamma_{r} W_{(3}\right) F_{4)}^{s t} \\
& +\frac{1}{96}\left(W_{3} \gamma^{m s t} W_{4}\right)\left(\lambda \gamma_{n p q r s} \lambda\right)\left(\lambda \gamma_{t} W_{5}\right) F_{1}^{n p} F_{2}^{q r}+(5 \leftrightarrow 3,4)
\end{aligned}
$$

BRST variations of 2-loop building blocks

- Scalar building blocks

$$
\begin{aligned}
Q T_{1,2 \mid 3,4} & =0 \\
Q T_{12,3 \mid 4,5} & =s_{12}\left(V_{1} T_{2,3 \mid 4,5}-V_{2} T_{1,3 \mid 4,5}\right)
\end{aligned}
$$

- Vector building blocks

$$
Q T_{1,2,3 \mid 4,5}^{m}=k_{1}^{m} V_{1} T_{2,3 \mid 4,5}+k_{2}^{m} V_{2} T_{1,3 \mid 4,5}+k_{3}^{m} V_{3} T_{1,2 \mid 4,5}
$$

- Essentially the same algebraic structure as before!

2-loop 5pt topologies

- BCJ identities: master diagram (a) (Carrasco, Johansson '11)
- PSS representation

$$
2 N_{1,2,3 \mid 4,5}^{(a)}(\ell) \equiv\left(\ell_{m}+\ell_{m}-k_{m}^{123}\right) T_{1,2,3 \mid 4,5}^{m}+\left(T_{12,3 \mid 4,5}+T_{13,2 \mid 4,5}+T_{23,1 \mid 4,5}\right)
$$

2-loop 5-pt integrand

- BRST principle works exactly as before (CM, Schlotterer '15)
- Can assemble BRST-invariant 2-loop 5-pt integrand
- BCJ identities satisfied by construction, gravity amplitudes for free
- The solution for numerators look intuitive
- Hope to look for patterns allowing N-pt solution(?)

