EuroCirCol WP5 : Work Distribution June 3rd , 2015

Davide Tommasini

Reference parameters

FCC

- Bore diameter : 40-50 mm
- Dipoles : $\int Bdl \sim 1 MTm (4578 magnets, 14.3 m long, 16 T)$
- Quadrupoles : $\int Gdl \sim 2MT$ (762 magnets, 6.6 m long, 375 T/m)

LHC

- Bore diameter : 56 mm
- Dipoles : $\int Bdl \sim 0.15 MTm (1232 magnets, 14.3 m long, 8.3 T)$
- Quadrupoles : $\int Gdl \sim 0.28 MT$ (392 magnets, 3.15 m long, 223 T/m)

About a factor of 7!

Conductor

Cost

even in a dream we will never be comparable to that of the LHC in terms of "conductor cost per magnet length".

We can imagine scaling by a factor of 2 due to twice the field and another factor of 2 due to twice the current setting a target of:

```
10 Euro/kAm @ 4.2K, 16T
```

Performance

Interesting to remark that @ 16-18T for most of conductors (Nb₃Sn, BSCCO, YBCO, REBCO) $J_{eng} \sim 500 \text{ A/mm}^2$ is already more or less on reach, though at different cost and with a number of technological limitations..

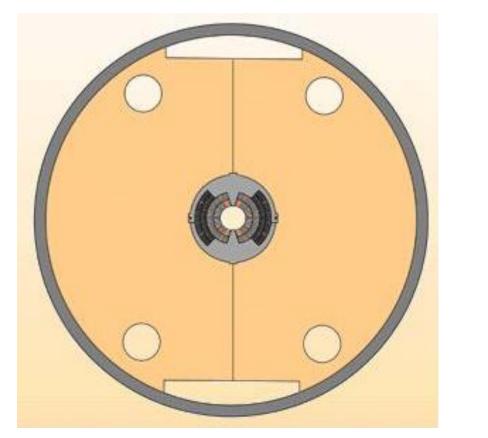
In the EuroCirCol context we will focus on Nb₃Sn,

considering a realistic hypothesis in the timeframe of the Project

Towards 16T magnets with bore

	D20 1997	HD2c 2009	
Coil configuration	$\cos \theta$	blocks	
Bore (mm)	50	36	
Achieved bore field (T)	13.5 @ 1.9K	13.8 @ 4.3K	
J _{eng} @ 12T, 4.2K (A/mm²)	750	1850	
J _{eng} @ 16T, 4.2K (A/mm ²)	270	800*	
J _{eng} @ 12T, 1.9K (A/mm²)	1000	2400	
J _{eng} @ 16T, 1.9K (A/mm²)	420	1200	

* Corresponds to FCC target, though with too high magnetization and cost

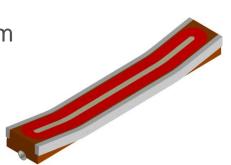

HD2c Cu/Sc=0.85-0.95 D20 Cu/Sc=0.4 on inner layer

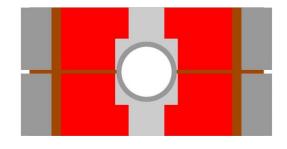
Many thanks to Paolo Ferracin for help in retrieving information on D20 and HD2

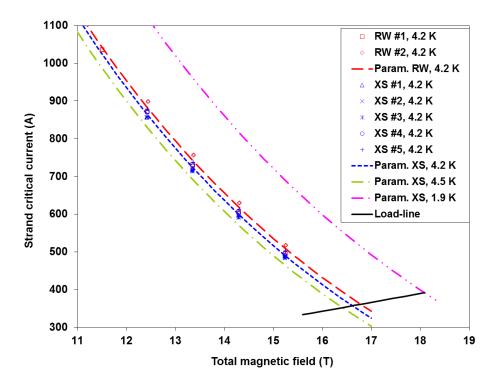
D20

50 mm bore

4 layers, 13 blocks Yoke outer radius: 381 mm Shell thickness: 25 mm






HD₂c

36 mm bore

2 layers, 2 blocks Yoke outer radius: 311 mm Shell thickness: 41 mm

Davide Tommasini

EuroCirCol Kickoff Meeting

June 3rd , 2015

WP5: Sub-Work-Packages

As in H2020-INFRADEV-1-2014-1

Scope is: engineering design of a 16T accelerator dipole, based on LTS @ 4.5K A parallel «Magnets Technologies» program is being organized

Description	CERN	TUT	CEA	INFN	UT	CIEMAT	KEK	UNIGE
FTE months	80	40	36	36	38	48	12	24
5.1 Work Package Coordination	X							
5.2 Design options	Х		X				Х	
5.3 Magnet cost model	X		Х			х		
5.4 Electromagnetic design				X	Х	х		
5.5 Mechanical design			Х	Х	Х	X		х
5.6 Quench protection		X		Х				
5.7 Manufacturing folder	х		X					

- Carry two options in parrallel till the end?
- Group electromagnetic+structural design?
- Introduce 3D design?

Responsibilities

As in H2020-INFRADEV-1-2014-1

WP	ID	Description
	CEA	Qualification of alternative options
5.2	CERN	Review of alternatives
	KEK	Explore potential of Nb ₃ Al
	CERN	The model will take into account the experience in the LHC (dipoles + quadrupoles)
5.3	CEA	
	CIEMAT	
	INFN	Analysis of field quality and transient effects
5.4	UT	Experimental data about DC and AC magnetization, non-linear and transient effects
	CIEMAT	Design of the coil cross section
	CIEMAT	Development of the coil and structure concepts
	CEA	2D and 3D coil stress analysis
5.5	INFN	Analysis of the structure and the assembly
	UT	Cable behaviour and limits
	UNIGE	Strand behaviour and limits
5.6	TUT	Quench protection of a string of magnets
5.0	INFN	Quench protection of a single magnet
5.7	CEA	Participation in the execution of the drawings. Definition of assembly procedures.
5.7	CERN	Participation in the execution of the drawings. Organization of archiving.

Milestones & Deliverables

As in H2020-INFRADEV-1-2014-1

Milestones

MS-5.1 WP group established and hiring complete	5
MS-5.2 Baseline specifications and assumptions for accelerator magnet	10
MS-5.3 Specifications for conductors and conductor configurations	34
MS-5.4 High-field accelerator dipole conceptual design report	46
MS-5.5 Report on recommended follow-up R&D	47

Deliverables	
D-5.1 Overview of magnet design options	17
D-5.2 Identification of preferred dipole design options and cost estimate	26
D-5.3 Cost model (optimistic, likely and conservative)	39
D-5.4 Manufacturing folder for reference design short model	46

Proposed strategy

- ✓ Forum "Towards 16T Accelerator Magnets" sharing information between:
 - EuroCirCol
 - A companion "technology development program"
 - Other programs (US, JP, RU ...)

For EuroCirCol

- ✓ Trim responsibilities in the WP descriptions (this meeting)
- ✓ Define a planning with deliverables (this meeting)
- ✓ "Coffee video-meetings" with open participation
- ✓ "Advancement video-meetings"
- ✓ Two workshop-meetings per year

	2015			2016			
	Sept 02	Oct 14	Nov 25	Feb 10	Apr FCC Y	Jun 01	
Coffee	Х			Х			
Advancement		Х			Х		
Workshop			Х			Х	

WP5 Coordination Meeting : Agenda

Wed 14:00 – 15h30 room 30/6-019 (Vidyo) WP5 : Scope and methods

Wed 16:00 - 17h30 room 6/R-012

Common session, basic parameters

- WP2 (Arc Design and Lattice Integration)
- WP3 (Experimental Insertion Region Design)
- WP5 (High Field Accelerator Magnet Design)

Thu 09:00 – 10h30 room 30/7-018 (Vidyo)

WP5 : Distribution of the work

Thu 11:00 - 12h30 room 112/R-028

Common session, basic parameters

- WP4 (Cryogenic Beam Vacuum System Conception)
- WP5 (High Field Accelerator Magnet Design)

Thu 14:00 – 15h30 room 112/R-028 WP5 : Tentative planning

Thu 16:00 – 17h30 room 6/R-012 Plenary conclusion Thank you for your attention

