
 

Benchmarking message queue libraries and network 
technologies to transport large data volume in 

the ALICE O2 system 
 

V. Chibante Barroso, U. Fuchs, A. Wegrzynek for the ALICE Collaboration 

 Abstract–ALICE (A Large Ion Collider Experiment) is the 
heavy-ion detector designed to study the physics of strongly 
interacting matter and the quark-gluon plasma at the CERN LHC 
(Large Hadron Collider).  

ALICE has been successfully collecting physics data of Run 2 
since spring 2015. In parallel, preparations for a major upgrade, 
called O2 (Online-Offline) and scheduled for the Long Shutdown 2 
in 2019-2020, are being made. One of the major requirements is the 
capacity to transport data between so-called FLPs (First Level 
Processors), equipped with readout cards, and the EPNs (Event 
Processing Node), performing data aggregation, frame building 
and partial reconstruction. It is foreseen to have 268 FLPs 
dispatching data to 1500 EPNs with an average output of 20 Gb/s 
each. In overall, the O2 processing system will operate at terabits 
per second of throughput while handling millions of concurrent 
connections. To meet these requirements, the software and 
hardware layers of the new system need to be fully evaluated.  

In order to achieve a high performance to cost ratio three 
networking technologies (Ethernet, InfiniBand and Omni-Path) 
were benchmarked on Intel and IBM platforms. 

The core of the new transport layer will be based on a message 
queue library that supports push-pull and request-reply 
communication patterns and multipart messages. ZeroMQ and 
nanomsg are being evaluated as candidates and were tested in 
detail over the selected network technologies. 

This paper describes the benchmark programs and setups that 
were used during the tests, the significance of tuned kernel 
parameters, the configuration of network driver and the tuning of 
multi-core, multi-CPU, and NUMA (Non-Uniform Memory Access) 
architecture. It presents, compares and comments the final results. 
Eventually, it indicates the most efficient network technology and 
message queue library pair and provides an evaluation of the 
needed CPU and memory resources to handle foreseen traffic. 

I. INTRODUCTION 

A. The ALICE Experiment 
LICE (A Large Ion Collider Experiment) [1] is the heavy-
ion detector designed to study the physics of strongly 

interacting matter and the quark-gluon plasma at the CERN 
Large Hadron Collider (LHC). ALICE consists of a central 
barrel and a forward muon spectrometer, allowing for a 
comprehensive study of hadrons, electrons, muons and 
photons produced in the collisions of heavy ion. The ALICE 
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collaboration also has an ambitious physics program for 
proton-proton and proton-ion collisions. 

After a successful Run 1 ALICE has been taking data of 
Run 2 since the beginning of 2015. In the end of 2018 the 
LHC will enter a consolidation phase – Long Shutdown 2. At 
that time ALICE will start its upgrade to fully exploit the 
increase in luminosity. 

The upgrade foresees a complete replacement of the current 
computing systems (Data Acquisition, High-Level Trigger [2] 
and Offline) by a single, common O2 (Online-Offline) system. 

B. The ALICE O2 system 
The ALICE O2 computing system [3] will allow to record 

Pb-Pb collision at 50 kHz rate. Some detectors will be read out 
continuously, without physics triggers. Instead of rejecting 
events O2 will compress data by online calibration and partial 
reconstruction.  

The first part of this process will be done in dedicated 
FPGA cards that are supplied with raw data from detectors. 
The cards will perform baseline correction, zero suppression, 
cluster finding and inject the data into FLP’s (First Level 
Processors) memory to create a sub-timeframe. Then, the data 
will be distributed over EPNs (Event Processing Node) for 
aggregation and additional compression.  

The O2 facility will consist of 268 FLPs and 1500 EPNs. 
Each FLPs will be logically connected to each EPN through a 
high throughput network. The O2 farm will receive data from 
detectors at 28.8 Tb/s, which after processing will be reduced 
to 720 Gb/s. 

II. MOTIVATION 
Transferring and processing Tb/s of data inside the O2 

system is a challenge for the network and computing 
resources. Assuming a throughput of 40 Gb/s the distance 
between Ethernet frames is very small – 300 ns. During that 
time the Linux kernel has to go through the whole TCP/IP 
stack and deliver the data to user space which consumes a 
large amount of computing resources. This work aims at 
estimating the CPU needs for data transport inside the O2 
system. 

III. PERFORMANCE TUNING 
The following improvements were implemented to increase 

network throughput per CPU core: 
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• Increased MTU (Maximum Transmission Unit) – to 
decrease distance between Ethernet frames. 

• Increased buffers sizes – increased size of TCP and IP 
buffers to avoid fluctuation and packet losses. 

• Enabled TSO (TCP Segmentation Offloading) [4] – 
offloads CPU from data segmentation; the network 
card chops the stream of data into number of needed 
segments, the process is done in the device’s hardware 
and works only on the sender side (no support on the 
receving side), TSO is widely supported by Linux 
starting from kernel 2.6. 

• NUMA tuning – in multi-CPU and multi-core era its 
paramount to configure CPU affinity and IRQs of the 
network card properly; the CPU memory should be 
used to avoid inter-CPU bus transfers. 

• Intel DDIO [5] – allows network adapters to 
communicate directly with the processor's cache, 
reducing transfers to the main memory and therefore 
lowering the latency; cache sizes in modern CPUs are 
large enough (20MB) and can be shared among other 
cores. DDIO is supported by Intel Xeon E5 and E7 v2 
processor families. 

IV. NETWORK TECHNOLOGIES 
The average outgoing traffic from a single FLP is estimated 

to be 20 Gb/s and incoming traffic to a single EPN to be less 
than 10 Gb/s. Therefore, EPNs can be equipped with standard 
10 Gb/s cards, but FLPs need a more effective solution. The 
list of chosen network candidates is the following: 

• 40 Gigabit Ethernet (40 GbE) – widely used, next 
version of network standard also optimized for shorter 
distances [6]. 

• InfniBand (IB) FDR – 56 Gb/s; dedicated for 
interconnecting computers at high throughput and low 
latency, especially in HPC (High-performance 
computing) systems. 

• Omni-Path (OPA) [7] – 100 Gb/s; Intel's interconnect 
compatible with InfiniBand, it outstands with fabric 
integrated into CPU; end-to-end solution is provided: 
switches, software stack, fabric interface. 

V.  METHODOLOGY 
The measurements, described in this paper were performed 

by connecting a single FLP and EPN through a switch. This 
allows to test how hardware and software deal with large 
traffic, examine stability and performance, characterize data 
flow and produce input data for simulations. Further tests with 
more advanced architecture are ongoing – see Future Work 
section. 

A. Test Setups 

Four hardware set-ups, based on Intel and IBM platforms, 
were used – Table I. 

Each set-up consists of two identical servers equipped with 
the same CPU and network card, one acting as FLP and the 
other as EPN. 

 
TABLE I. TEST SETUPS 

 
 Setup name Network Network adapter  CPU 
 Intel/GbE 40 GbE Chelsio T580    Intel E5-2690 
 Intel/IB IB FDR Mellanox MT27500  Intel E5-2690 
 Intel/OPA OPA -    Intel E5-2680v4 
 IBM/IB IB FDR Mellanox MT4115 IBM P8 2822LC 

 

B. Configuration 
By default, kernel available in current versions of Linux 

distributions is optimized for throughputs lower than 10 Gb/s. 
Therefore, to cope with the large traffic, several tweaks were 
deployed: 

• irqbalance service, distributing interrupts over multiple 
CPUs, was turned off as it’s more efficient to keep 
IRQs at the same NUMA node. Therefore, manual 
configuration of IRQs and CPU affinity was made.  

• Network adapter and its interrupts were handled by the 
same CPU. High number of interrupts may kill the 
performance of the application running in the user 
space, therefore they were handled by separated, 
dedicated core.  

• Benchmark application was pinned to chosen core of 
the same NUMA node. Such configuration minimizes 
usage of the inter-processors interconnect. 

Further tuning concerns network stack buffers and 
parameters – see Table II. 
 

TABLE II. NETWORK STACK BUFFERS AND PARAMETERS 
 
 Parameter name  Value 
 TCP recv buffer  4096 87380 16777216 
 TCP send buffer  4096 87380 16777216 
 Socket backlog  250000 
 Maximum Transmission Unit 9000 
 Transmit queue length  50000 

 

C. Benchmarks 
The benchmark simulates data transmission between FLP 

and EPN. On the FLP side it allocates a large fragment of 
memory and fills it with dummy events of a given size. Then it 
indefinitely iterates over these events and pushes them to the 
EPN. The EPN receives, unpacks data and immediately 
discard it. Four benchmarks were prepared based on the 
following libraries: 

• ZeroMQ – message-based library supporting a large 
number of socket patters that help to create complex, 
distributed systems; 

• nanomsg – fork of ZeroMQ with ability to plug custom 
transports, improved threading model and state 
machine [8]; 

• asio – asynchronous, low level I/O library; 
• FairMQ – high level transport framework with own 

state machine and ability to work on top of lower level  
network library such as ZeroMQ and nanomsg; 
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• O2 – development version of the O2 framework that 
uses FairMQ. 

All mentioned libraries require TCP/IP which natively is 
not supported neither by IB nor by OPA. There are several 
ways to provide this functionality: 

• SDP (Socket Direct Protocol) – automatically converts 
TCP so it can run smoothly over IB. It was successfully 
configured on CentOS 7 and tested with iperf [10] tool. 
Unfortunately, SDP is not compatible with ZeroMQ. 

• IPoIB – implementation of full TCP/IP stack for IB. 
• IPoFabric – the same as IPoIB but applies to OPA. 
It is worth to mention that there is another solution that 

supports all mentioned fabric technologies – libfabric 
framework. Libfabric is outside the scope of this paper but it is 
foreseen to include it in future tests. 

D. Tools 
To compare the test setups and network libraries, a selected 

number of parameters were monitored. Table II lists the tools 
that were used to acquire them. 

 
TABLE II. TOOLS 

 
 Tool name Usage 
 nload Network throughput monitoring 
 Intel PCM [9] Memory throughput monitoring 
 sysstat CPU usage and IRQs per second 
 numactrl Controls NUMA policy 
 ethtool Changes network device settings 
 oprofile Software profiler 
 

A test utility that launches benchmarks on FLPs and EPNs 
and collects the output of the monitoring tools was developed, 
allowing measurements to be done almost automatically. 

VI.  RESULTS 
The results are presented in plots representing: utilization of 

the CPU core that was handling benchmark application on 
receiving/transmitting sides and network throughput, both as a 
function of block size. The range of block sizes was chosen 
based on information provided by detector teams. The most 
significant value is 50 MB that corresponds to a detector 
contributing to 97% of the total traffic. 

A. Intel/GbE 
Figure 1 shows network throughput as a function of block 

size for 40 GbE network on Intel platform. Unanticipated 
behavior of nanomsg can be observed: Its throughput goes 
down to almost 0 for block sizes larger that 1MB (the exact 
value is 1048576B). It is caused by internal limitation of the 
library. The issues was reported to developers and left without 
response [11]. 
 

  
 
 
Fig. 1. Network throughput as a function of block size - 40 GbE on Intel 
platform. 
 

 
 
 
Fig. 2.  Memory throughput as a function of block size for ZeroMQ 
benchmark – 40 GbE on Intel platform 
 

 
 

Fig. 3.  CPU’s core usage as a function of block size on the receiving side 
(EPN) – 40 GbE on Intel platform 
 

The other unexpected behavior is the throughput decrease 
for block sizes larger than 25 MB for all benchmarks except 
asio. It is mainly caused by DDIO which is less efficient for 
bigger blocks. Increased traffic through the main memory on 
the EPN side is observed – see Figure 2 that shows memory 
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throughput as a function of block size for the ZeroMQ 
benchmark. This also causes higher CPU utilization due to 
data copy into main memory – see Figure 3. On the FLP side 
we observed corresponding drop in CPU utilization - see 
Figure 4. 

 

 
 
Fig. 4.  CPU’s core usage as a function of block size on the transmitting side 
(FLP) – 40 GbE on Intel platform. 
 

 

 
 
 
Fig. 5.  No tuning and single core cases as a function of block size for 
ZeroMQ benchamrk – 40 GbE on Intel platform 

 
Figure 5 presents the following additional cases that were 

measured only for ZeroMQ benchmark:  
• No tuning – default sizes of network buffers, but IRQs 

handled by second core, 
• Single core – in addition to “No tuning” case IRQs and 

the benchmark application are handled by the same 
CPU core,  

• Tuned – original case as on Figure 1. 
It can be seen that tuning buffers can slightly increase the 

performance. For such high transfer rates there are thousands 
of network’s device IRQs per second. For each invoked IRQ, 
the kernel stops program execution and switches the context to 
process it, what significantly lowers the throughput.  

B. Intel/IB 
Figure 6 presents network throughput as a function of block 

size for IB with IPoIB extension on Intel platform. As for 40 

GbE the same unexpected behavior for messages larger than 
25 MB occurs. In addition, a large overhead due to IPoIB is 
observed. The measured throughput is limited to 25 Gb/s out 
of 56 Gb/s of available bandwidth. 

 
 
Fig. 6.  Network throughput as a function of block size – IPoIB (IB FDR) on 
Intel platform. 

 

C. Intel/OPA 
Figure 7 presents network throughput as a function of block 

size for OPA fabric with IPoFabric enabled. As for other Intel 
based setups the issue of decreasing throughput for messages 
larger then 25MB can be observed. The overhead of IPoFabric 
is even larger than for IB (only 37.5 Gb/s out of available 100 
Gb/s).  

 

 
 
Fig. 7. Network throughput as a function of block size – IPoFabric (OPA) on 
Intel platform. 
 

D.  IBM/IPoIB 
Figure 8 shows network throughput as a function of block 

size for IB network with IPoIB running on IBM platform. The 
throughput is constant after reaching the maximum value 
limited by IPoIB. The results are better comparing to the Intel 
based solution thanks to the ConnectX-4 network controller of 
the newest Mellanox card. 
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Fig. 8. Network throughput as a function of block size – IPoIB (IB FDR) on 
IBM platform. 

VII. CONCLUSION 
Ethernet with its long-serving TCP/IP stack reached its 

maximum speed. In this case single core of the modern CPU is 
enough to transport needed traffic from FLP to EPN. 

The solutions not supporting TCP/IP natively such as IB 
and OPA have the large overhead. IPoIB and IPoFabric use 
less than half of the available bandwidth. IPoIB and IPoFabric 
running on Intel platform require two cores of the CPU and 
IPoIB on IBM platform singe core to transport given traffic. 

The accelerating mechanisms such as TSO and DDIO 
improves network throughput while running at high CPU load. 

Tuning network buffers and parameters, setting up IRQ and 
NUMA correctly allows to utilize the potential performance 
from the hardware. 

VIII.  FUTURE WORK 
The results presented in this paper refer to single sender and 

receiver architecture. The final setup is more complex, 
therefore further test will be performed starting from a single 
FLP dispatching data to multiple EPNs and finishing with N 
FLPs to M EPNs. This will allow to evaluate how the system 
behaves in terms of load balancing and scalability when 
handling thousands of concurrent connections. 

Another point of improvement is the utilization of the 
bandwidth of IB and OPA. Using alternative solution to IPoIB 
and IPoFabric may increase the throughput. One example that 
will be tested is libfabric that can run over IB, OPA and 
Ethernet. 
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